Title: Review: Plant eco-evolutionary responses to climate change: Emerging directions **Authors:** Elena Hamann¹, Derek Denney¹, Samantha Day¹, Elizabeth Lombardi², M. Inam Jameel¹, Rachel MacTavish¹, Jill T. Anderson¹ ¹ Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA 30602, USA ² Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850 *corresponding author: Jill T. Anderson Email: jta24@uga.edu Phone: 706-542-8000 **Abstract**: Contemporary climate change is exposing plant populations to novel combinations of temperatures, drought stress, [CO₂] and other abiotic and biotic conditions. These changes are rapidly disrupting the evolutionary dynamics of plants. Despite the multifactorial nature of to alter evolutionary processes. We first explore the ramifications of climate change for key life history stages (germination, growth and reproduction). We then examine how mating system Abstract: Contemporary climate change is exposing plant populations to novel combinations of temperatures, drought stress, [CO₂] and other abiotic and biotic conditions. These changes are rapidly disrupting the evolutionary dynamics of plants. Despite the multifactorial nature of climate change, most studies typically manipulate only one climatic factor. In this opinion piece, we seek to explore how climate change factors interact with each other and with biotic pressures to alter evolutionary processes. We first explore the ramifications of climate change for key life history stages (germination, growth and reproduction). We then examine how mating system variation influences population persistence under rapid environmental change and propose that mixed mating could be advantageous in future climates. Furthermore, we discuss how spatial and temporal mismatches between plants and their mutualists and antagonists could promote or constrain adaptive responses to climate change. For example, plant-virus interactions vary from highly pathogenic to mildly facilitative, and are partly mediated by temperature, moisture availability and [CO₂]. Will host plants exposed to novel, stressful abiotic conditions be more susceptible to viral pathogens? Finally, we propose novel experimental approaches that could illuminate how plants will cope with unprecedented global change, such as resurrection studies combined with experimental evolution, genomics or epigenetics. **Keywords:** Evolutionary dynamics, life-history stages, mating systems, biotic interactions, climatic variability, ecological genomics #### Introduction Atmospheric carbon dioxide concentrations (hereafter: [CO₂]) have risen by 45% since the Industrial Revolution [1] and temperatures are increasing globally [2]. In addition, climate change is altering precipitation patterns and increasing the frequency of extreme weather events worldwide [3]. Anthropogenic climate change is imposing novel selection on plant populations in increasingly fragmented landscapes [4, 5]. At the organismal level, global change can affect physiological functions such as assimilation rate and stomatal conductance [6], germination [7], growth and elongation [8], flowering [9], and fruiting phenology [10], as well as leaf senescence [11]. Plant populations must respond to these shifts in climate by migrating to favorable climates, adapting to novel conditions, or shifting their phenotypes plastically to persist through environmental changes [12, 13]. Here, we evaluate the consequences of changing climates on plant developmental stages, mating systems, and biotic interactions. We highlight key emerging directions for future research. # 1. Organismal and population responses to climate change ### 1.1. Germination The environmental conditions seedlings experience during germination can have a long-lasting impact across the life cycle [14, 15]. Many plant species require specific temperatures and moisture levels to break dormancy, which may be at risk of disruption due to climate change [16]. Additionally, temperature and water availability affect the timing and success of seed germination [17-19]. Increased temperatures could reduce seed viability [20] and decreased moisture availability could prevent seeds from breaking dormancy [21]. The interplay of abiotic factors may be driving germination responses to climate change, yet more multifactorial studies are needed to test how simulateneous changes in abiotic conditions affect germination. Studies that evaluate temperature, [CO₂] or moisture in isolation risk making inaccurate conclusions about germination responses to climate change. Despite the considerable effort to understand thermal and moisture requirements for germination [22-25] (Table 1), relatively little is known about how climate change will affect the genetic, molecular, and physiological mechanisms associated with germination [26]. Much of our knowledge of the molecular processes involved with germination comes from crop plants [27], and often ignores a growing body of literature on physiological and morphological seed traits involved in germination [28]. Additionally, studies should examine the fitness consequences of temporal shifts in germination [15, 16]. By exploring the effects of climate change on the processes by which seeds germinate, future studies will generate realistic predictions of recruitment from seed under climate change [29, 30], and inform conservation strategies [26]. ### 1.2. Plant Growth Temperature, [CO₂], and water availability directly affect photosynthesis and growth rates [88, 89] (Table 1). For example, elevated [CO₂] and mild increases in temperature have enhanced plant growth in deciduous tree species [90] and herbaceous species [91], as well as in biomes at higher latitudes and colder climates [54, 92], where growth is generally constrained by low temperatures and short growing seasons. Many models assume that global increase in temperatures and elevated [CO₂] will enhance plant growth rates, especially in C₃ plants [59]. However, these models often do not accurately predict the responses of communities to climate change [93]. For example, Nitrogen (N) and water limitation can offset the fertilizing effect of [CO₂] [62, 94]. Additionally, plant growth models often ignore species from the tropics [48] or have oversimplified estimates for some regions [93]. Indeed, climate change has reduced photosynthetic capacity and growth for plants in the tropics [48]. Thus, future models need to incorporate [CO₂], temperature, water and nutrient limitations to predict plant growth at regional scales [93, 95], especially in highly diverse tropical habitats. Additionally, vapor pressure deficits associated with warming temperatures increases drought stress in plants [73], yet we know little about how this interaction influences plant growth [96]. Multi-factorial manipulations, especially involving drought, vapor pressure deficits and nutrient limitations, will greatly increase our understanding of the long-term effects of climate change on plant growth and improve realism of predictive models. ### 1.3. Reproductive phenology Climate change has induced earlier reproduction among spring-flowering angiosperms [64, 66, 80, 97]. Climate-change mediated selection generally favors earlier flowering, but at differing rates among populations across elevational gradients [69, 70] and geographic regions [98]. Several key questions remain unresolved: What are the fitness and demographic consequences of altered reproductive phenology [99-101]? Does accelerated reproductive phenology lead to greater mismatches with antagonists or mutualists [102]? Will phenology keep pace with climate change plastically? By addressing these questions through a combination of observational and experimental studies in the field, future research can make robust predictions about population persistence and community dynamics, and target conservation activities toward vulnerable species and ecoystems. The majority of studies of reproductive phenology explore shifts in spring and summer climates and focus on forbs in temperate, boreal, alpine, or subalpine climates [103] (Table 1). Few studies: examine the effects of non-growing season temperatures on phenological responses to climate change [10], focus on the tropics [104], or evaluate the duration of reproduction [105-107]. Additionally, warming spring and summer temperatures do not affect fall flowering plant phenology at the same rate as spring flowering plants [103, 108]. Future studies that incorporate factors beyond spring and summer climates will shed light on phenological shifts, especially in regions where temperatures are relatively consistent year-round [104, 109]. **Table 1**: Known effects of climate change factors on plant life-history stages | Life History | | | | |--------------|--|--|---| | Stage | Elevated Temperature | Disrupted Precipitation | Elevated [CO ₂] | | Dormancy and | High temperatures affect seed metabolism and compromise seedling development [31, 32] | Altered precipitation affects spring and autumn germination rates differently [38] | Too few studies to generalize [42-44] | | Germination | High temperatures increase probability of germination in alpine plants [22, 33] | Seed dormancy may buffer populations from variable precipitation patterns [39] | N availability may influence germination
more than CO ₂ [45] | | | High temperatures delay germination in Mediterranean climates [34, 35] | Seeds from drought resistant species will have a germination advantage in more arid climates, which could alter community | | | | Elevated temperatures will exceed optimal germination temperatures in the tropics and decrease germination [36] | dynamics [40] Germination of tropical species will be more limited by water | | | | Warming temperatures may exceed cold stratification requirements for seeds in high elevation and high latitude locales [37] | availability than temperature [41] | | | Growth | Molecular regulation is sensitive to extreme temperatures expected under climate change [46] | Drought reduces growth in most ecosystems [51] by inducing stomatal closure and decreasing photosynthetic capacity [52] | Increases plant growth in C ₃ plants [59], which could alter community composition Increases water use efficiency of leaves [60] Increased photosynthesis [61] Growth may depend on long-term exposure to CO ₂ and community-level responses to CO ₂ [62, 63] | | | Plants in historically cool climates at higher latitudes and elevation could experience increased growth [47] | Population responses to altered precipitation patterns depend
on environmental heterogeneity and soil moisture [53, 54] | | | | Increased temperatures could hinder plant growth in the tropics where plants already experience temperatures near their thermal optima [48, 49] | Flooding may occur due to climate change, which will hinder growth due to an increase in oxidative stress and decrease in nutrient availability [55, 56] | | | | ant growth under higher temperatures depends on water availability [0] | Earlier fall precipitation can increase plant growth in arid and semiarid ecosystems [57, 58] | | | Reproduction | Warming temperatures accelerate flowering phenology in spring-
flowering angiosperms [64-68], and favor earlier flowering in extra-
tropical habitats [69, 70] | Reproductive effort declines in response to drought [77, 78] Drought reduces flowering and fruit production in tropical species [78, 79] | Increased carbon allocation to flowers could enhance fecundity [84] | | | Warming temperatures increase flower development in tropical species [71] | Flowering time shifts earlier in response to drought [80, 81] | Elevated [CO ₂] increases number of seeds produced in crop plants [85, | | | Warming temperatures disrupt pollen development and fertilization [72], and reduce pollen viability [73, 74] | Increased precipitation lengthens flowering duration in late-
flowering plants [67] | 86] Increased [CO2] has no effect on flowering phenology [87] | | | Altered fruit sugar concentrations, and reduced resistance to fruit pathogens [75, 76] | Earlier snowmelt advances flowering phenology in alpine plants [82, 83] | | ### 1.4. Mating system variation Plant species vary immensely in their mating systems [110], from completely outcrossing and self-incompatible to entirely self-pollinating [111], with approximately 42% of seed plants exhibiting mixed mating systems [112]. Mating systems influences gene flow, genetic diversity and population size [110, 113], but few studies have empirically evaluated the adaptive potential of mating systems under climate change. Outcrossing populations typically have high within-population genetic variation in contrast to populations of self-pollinating species [110]. Self-compatibility has evolved numerous times from outcrossing systems to enable reproduction when pollinator density is low and when conspecifics are rare [114]. However, inbreeding depression can constrain the evolution of selfing [112, 115]. Mixed mating systems offer reproductive assurance when outcrossing fails [114], leading to genetically diverse populations with large effective population size [112]. Outcrossing species may have sufficient genetic variation to adapt to novel selection, but the global loss of pollinators (see *Plant-pollinator interactions* below) has reduced the number of seeds produced by outcrossing plant species, potentially favoring the evolution of self-compatibility [111, 116, 117]. Wind-pollinated plants, in contrast, could maintain high evolutionary potential under climate change, as they do not depend on animal vectors for fertilization [118]. For example, *Festuca rubra* (Poaceae) is a wind-pollinated grass found across the northern hemisphere [118]. Under projected climatic conditions for western Norway, *F. rubra* could adapt readily, as the species has relatively few genetic constraints [118]. We propose that obligately outcrossing mating systems reliant on animal pollinators may decline in future climates. Wind pollinated species may adapt to future conditions, but can still suffer from effects of mate limitation during migration or as a consequences of habitat fragmentation [119, 120]. Historical shifts towards self-pollination have been associated with range expansion during periods of warmer temperatures in the Mid-Pleistocene transition. The predominantly self-pollinating Arabidopsis thaliana (Brassicaceae) is hypothesized to have evolved from an outcrossing ancestor that transitioned to self-compatibility during a shift towards arid conditions in Africa 1.2-0.8 mya [121]. African accessions of A. thaliana display the highest haplotypic diversity of the self-incompatibility locus and all haplotypes can be found in present day Morocco, suggesting that self-compatibility likely evolved in a single geographic area [121]. Populations that increase rates of self-pollinating as a consequence of climate change will initially experience inbreeding depression [122]. However, once deleterious recessive mutations are purged through continued inbreeding, newly self-pollinating species could successfully establish in regions with limited pollinators and mates [112, 115]. Self-compatible systems may also be favored as habitat fragmentation reduces population sizes and the number of potential mates [123]. Predominantly self-pollinating systems also face challenges from rapid climate change due to spatially-restricted gene flow and limited within population genetic variation [70, 113]. For example, a meta-analysis showed that self-pollinating populations exhibit low levels of additive genetic variation in quantitative traits [124]. Contemporary global change may initially favor self-compatibility, but strictly self-pollinating populations could have restricted adaptive potential in the long-term. We hypothesize that mixed-mating strategies could reduce the risk of extinction under climate change [125]; however, inbreeding depression may be exacerbated under novel environments and reduced pollinator availability [125-127] (Table 2). Inbreeding depression has increased significantly under stressful conditions in species with mixed mating systems [126]. Mixed-mating populations may avoid the fitness costs of self-pollination as long as the shift is phenotypically plastic and not a fixed genetic response to selection [125, 128]. For example, individuals of the mixed-mating species *Viola praemorsa* spp. *praemorsa* showed a 45% increase in self-pollination in chasmogamous (open) flowers and a 15% increase in fruit production in the cleistogamous (closed, self-pollinating) flowers when exposed to increased temperatures and reduced rainfall during one growing season [128]. These plastic responses where not associated with visible effects of inbreeding depression [128]. Self-compatible species with mixed mating systems may have an advantage under novel climates, as self-pollinating could provide reproductive assurance in expanding range fronts and fragmented landscapes, and outcrossing populations could harbor the genetic variation necessary to adapt *in situ*. Species often reproduce both sexually via flowers and clonally through stolons or tillers [142]. Similarly, some species can reproduce sexually via seeds, but also asexually via apomixis (reproduction without fertilization) [143]. Clonal reproduction is a major adaptation of arctic and alpine plants to severe climatic conditions and nutrient shortage in cold environments [142, 144]. The extent of clonal reproduction tends to increase with elevation [145, 146] and aridity [147] as costs of sexual reproduction increase. Vegetative reproduction is often a plastic response to environmental conditions [145]. Vegetative ramets can forage for resources or optimal conditions in pioneer communities or at range edges, enabling acclimation to novel or stressful conditions under climate change [146-148]. Asexual reproduction and clonal growth could become more prevalent in habitats disturbed by climate change. We encourage future research to examine whether reproductive plasticity and asexual reproduction could ensure population persistence under changing environmental conditions. We advocate for comparative studies evaluating the role of mating systems and reproductive modes in climate change responses. Future work can address whether pollinator loss and mate limitation favor self-compatibility [117] or plastic shifts between sexual and vegetative reproduction [147], and whether inbreeding depression will rise in species with mixed mating systems due to heightened self-pollination and environmental stress [115, 127]. Few studies have addressed the degree to which populations maintain sufficient genetic variation to shift from outcrossing to mixed mating systems under rapid contemporary climate change. By identifying closely related species or populations with different rates of self-pollination located in disparate environments, researchers can identify ecological factors that impose selection on mating systems and reproductive plasticity, quantify variable selection on traits related to self-pollination or outcrossing (e.g., flower size and anther-stigma distance in space and time), and identify loci under selection. Studies which use quantitative genetic approaches to
measure phenotypic responses of multiple species or populations to climate change manipulations in a common garden environment can to evaluate the consequences of mating system for persistence through climate change [70, 124, 149]. **Table 2:** An exhaustive list of studies that examine inbreeding depression in plant populations in response to stresses associated with climate change. Studies compared fitness components of inbred individuals with outcrossed individuals in control and treatment settings. Notably, there is only one study that manipulated multiple factors [133]. | | Climatic | | | |-------------------|-----------|---|----------| | Species | stress | Impact of stress on inbreeding depression | Citation | | | | Inbreeding depression increased under stress for number of flower heads and growth | | | Crepis sancta | Drought | rate | [129] | | Echium wildpretii | Drought | Inbreeding depression increased under stress for survival | [130] | | Lychnis flos- | | | | | cuculi | Drought | Inbreeding depression increased under stress for survival | [131] | | Raphanus sativus | Drought | No increase of inbreeding depression under stress | [132] | | Silene vulgaris | Drought | No increase of inbreeding depression under stress | [133] | | Solanum | | Inbreeding depression increased under stress for ramet number, biomass and fruit | | | carolinense | Herbivory | number | [134] | | Solanum | | | | | carolinense | Herbivory | Inbreeding depression increased under stress for ramet number | [135] | | Mimulus guttatus | Herbivory | Inbreeding depression increased under stress for aboveground biomass | [136] | | Silene vulgaris | Herbivory | No increase of inbreeding depression under stress | [133] | | Mimulus guttatus | Herbivory | Inbreeding depression increased under stress for number of flowers and biomass | [137] | | Datura | | | | | stramonium | Herbivory | No increase of inbreeding depression under stress | [138] | | Cucurbita pepo | Herbivory | No increase of inbreeding depression under stress | [139] | | Cucurbita pepo | Nutrient | Inbreeding depression increased under stress for number of flowers and fruits per plant | [140] | | Schiedea lydgatei | Nutrient | No increase of inbreeding depression under stress | [141] | | Silene vulgaris | Nutrient | No increase of inbreeding depression under stress | [133] | # 2. Biotic interactions Climate change directly influences natural communities through increased atmospheric [CO₂] and global temperatures along with altered precipitation patterns [reviewed in 150, 151]. These direct effects can diminish overall fitness, reduce migratory and adaptive potential [152, 153], and disrupt local adaptation [154, 155]. Additionally, climate change indirectly affects plant populations through altered biotic interactions (e.g., Fig. 1). Plant populations adapted to historical conditions at local microsites have evolved in response to interactions with biotic associates, be they antagonists or mutualists. Shared evolutionary histories have led to tight correlation between the performance of interacting species [156]. It is unclear whether natural plant populations will adapt to novel environments created by the indirect effects of climate change [157, 158]. We recognize that pairwise comparisons between plants and discrete taxonomic groups (e.g., bacteria) are incomplete but may be useful nonetheless. Here, we consider differences between generalized and specialized interactions between plants and their antagonists and mutualists. As the climate continues to change, the balance between generalists and specialists at the regional [159], community [160] and even species levels [161] could change for plants and their biotic associates. What are the ecological and evolutionary consequences of disrupted biotic interactions for plants? #### 2.1. Plant-Herbivore Interactions Since 1960, species of pathogens and herbivores have been migrating toward the poles at an average rate of 2.7 km per year [162]. During the same timeframe, global temperatures have increased by 0.12 °C per decade [1], which translates into a latitudinal median velocity of long-term temperature change of 2.73 km per year, reflecting the rate of migration of the natural enemies of plants [163]. Insect herbivores appear to be migrating faster than their plant counterparts [164], which is leading to novel plant-herbivore interactions in the expanding range of the herbivores [165, 166]. Some plants may already exhibit defenses that can protect against novel herbivores assemblages [167]. In other instances, native plants may be poorly adapted to new herbivores. For example, the mountain pine beetle (*Dendroctonus ponderosae*) has expanded into historically cooler forests in high latitude and high elevation locations in North America, resulting in massive pine forest mortality across 71,000 km² in the western United States [168]. We do not have precise maps of the distributions of most herbivores [169]. Future studies that compare available historical distribution data with contemporary distribution patterns could generate early predictions of the degree of novel plant-herbivore interactions along the migration routes of herbivores. Even outside of the context of range expansions, climate change can expose plants to greater levels of herbivory locally through several mechanisms [170]. For one, in temperate regions, warming springs and delayed winters lengthen the herbivore growing season [171]. In areas such as the western United States, climate change has reduced winter snowpack [172, 173], leading to increased early season vertebrate herbivory on woody species [174]. In contrast, warming winters in arctic zones have hardened snowpack, preventing herbivore vertebrates from foraging during the winter [175]. Increased atmospheric [CO₂] and temperature can alter the physiology and metabolism of herbivores and plants [176]. For example, elevated [CO₂] increases the ratio of carbon to nitrogen in plant tissue, thereby decreasing the nutritional quality for herbivores. In response, herbivores may increase consumption rates or shift to host plants that can meet their nutritional requirements [177]. Yet, increasing atmospheric [CO₂] may induce greater production of plant defenses [177]. Few studies have investigated the direct impacts of prolonged drought stress on herbivores [178], however, drought stress reduces plant fitness in many systems [179]. Additionally, climate change may accelerate the developmental rates of insect herbivores and increase the number of life cycles a species completes in a growing season [176]. For example, the mountain pine beetle (D. ponderoae) has shifted from a semivoltine lifecycle that takes two years to complete to a univoltine lifecycle of one year, resulting in larger outbreaks that significantly damage whitebark pine trees (*Pinus albicaulis*) in Yellowstone National Park [180]. However, rapid development can be costly; juvenile herbivores may not reach the appropriate developmental stage before the onset of winter [181]. Few studies investigate the synergistic effects of temperature, [CO₂] and new precipitation patterns on herbivory [178]. We call for multifactorial field experiments to test how climate change factors interact to influence plant-herbivore interactions. In addition, multidisciplinary approaches could shed light on the ecological and evolutionary consequences of mismatched migration rates between herbivores and plants. For example, herbivores expanding into novel ranges could behave as invasive species and may escape from their own natural enemies [182], which could increase population growth rates and result in greater herbivory to plant tissues. Experiments conducted outside of the contemporary range of herbivores could evaluate novel plant-herbivore interactions, but these studies must be designed carefully to prevent the establishment of non-native herbivores. Studies of plant-herbivore interactions under climate change focus almost exclusively on arthropod herbivores [but see 174]. Future studies of mammalian herbivores, especially large ungulates and their movement across landscapes will test how climate change is altering the diversity of herbivorous interactions in nature [183]. **Fig. 1:** An overview of the impacts of anthropogenic climate change on both plant-herbivore (A) and plant-pollinator (B) interactions. This outline acknowledges the variety of ways in which the abiotic factors associated with climate change disrupt these sensitive interactions. ### 2.2. Plant-Pollinator Interactions Insect pollinators have declined globally [184], as has the abundance of insect-pollinated plant species [185]. Pesticide use, and the direct and indirect consequences of climate change are all causal factors involved in the decline of insect pollinators [116]. Pollinator loss may lead to pollinator limitation and reduced fecundity in some plants; additionally, pollinators could face starvation if sufficient floral resources are not available [186]. For example, reduced flowering success under drought stress depressed bumble bee abundance [187]. However, reductions in bumble bee population sizes are not uniform across species [188-190]. What are the fitness costs of climate change for plants and pollinators, and are these costs greater in highly specialized pollination systems? Future studies of fitness costs can quantify the extent to which climate change could destabilize natural communities [191]. An estimated 94% of plants in tropical zones require animal pollination [192], yet the tropics are experiencing the fastest loss of pollinators [189]. In the tropics, insects are more sensitive to temperature changes, and population growth rates are expected to decrease by up to 20% [193]. Additionally, tropical zones have the largest proportion of specialized plant-pollinator interactions [194],
and pollinator specialists may not be able to adapt to climate change to the same extent as generalists [102]. We call for funding to support future studies in tropical biodiversity hotspots addressing the consequences of climate change for plant-pollinator interactions, plant phenology, and biodiversity conservation. Increasingly novel climates may lead to mismatched range shifts for plants and pollinators, which could be particularly problematic for specialized plant pollinator systems [102]. The tree bumble bee, *Bombus hypnorum*, expanded its range northward, from mainland Europe to the southern United Kingdom in 2001 and is now found as far north as Scotland where it acts as a pollinator for many native plants [195]. Interestingly, many species of butterfly pollinators have stalled their range shifts in response to climate change in both Canada and Europe, indicating that these species may not be able to keep pace with warming climates via range shifts [196-198]. A known barrier to butterfly range migration is habitat fragmentation, as it can severely limit dispersal abilities [198, 199]. As plants move into novel environments, increased interspecific competition for pollinators could reduce fitness [200]. Climate change could generate strong temporal mismatches between flowering time and pollinator emergence [201, 202]. Warming springs have accelerated flowering times and the arrival of pollinators [64], but not always at the same rates. For example, in the Colorado Rocky Mountains, spring arrival dates of broad-tailed hummingbirds (Selasphorus platycercus) and first flowering of various plant species are being decoupled [203]. These temporal mismatches could depress population growth rates of flowering plants that require pollinator services for reproduction and of pollinators that are sustained by floral resources [186]. Some studies, however, have demonstrated a lack of temporal mismatches between flowering time and pollinator emergence when early flowering plants are pollinated by early season pollinators [204]. Future research should explore how the degree of pollinator specialization influences plant-pollinator temporal mismatches and investigate the proximate environmental factors that elicit pollinator emergence vs. flowering. For example, climate change could exacerbate mismatches if a specialized pollinator is highly responsive to temperature cues and its host plant is responsive to photoperiod. In addition, we call for future studies testing whether the loss of specialized pollinators will reduce fecundity in their plant counterparts, or whether generalist species will maintain pollination services for these plants [186]. 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 Climatic conditions shape selection on both plant and pollinator traits [171, 205], and climate change can impose novel selection on these interacting species. For example, in the Colorado Rocky Mountains, two species of long-tongued bee specialists, *Bombus balteatus* and *Bombus sylvicola*, have historically pollinated flowers with deep corolla tubes; however, climate change has reduced the abundance of flowers with deep corolla tubes, leading to a decline in tongue length in bee pollinators [206]. Climate change has induced smaller body size in several bumble bee species over the past century, which is likely a plastic response to stressful conditions [190]. Morphological mismatches can occur between flower and pollinator due to changes in pollinator size, thereby resulting in ineffective pollinator services [207]. Given the importance of climatic factors in the evolution of plant and pollinator traits, we hypothesize that climate change will exert novel selection on these traits, which could further disrupt the quantity and quality of pollination. Indeed, climate change imposes strong selection on floral traits, such as nectar quality and flower size [205]. Drought-stressed plants produce fewer flowers, which often have reduced volumes of nectar [208]. In addition, the concentration of amino acids and carbohydrates in floral nectars is sensitive to temperature, [CO₂], and N availability [209]. Some pollinators, such as the honeybee (Apis mellifera), have strong preferences for nectar composition and experience increased mortality under low concentrations of sucrose [210]. Other floral traits, such as floral size, are also subject to climate-mediated selection [211]. In Israel, flower size of several species of *Oncocyclus* irises decreases with increased aridity, suggestive of drought-mediated selection [212]. Additionally, drought stress selects for reduced floral size in female alpine forbs, *Polemonium viscosum*, even though large flowers attract more pollinators [211]. As pollinators generally prefer larger flowers, flower size could be subject to conflicting selection, with abiotic factors favoring smaller flowers and biotic factors favoring larger flowers. Increasing aridity under climate change could shift the balance toward selection for smaller flowers, reducing the quantity of floral resources available to pollinators. ### 2.3. Plant-microbial interactions Interactions between plants and microbes (fungi, bacteria or viruses) can influence plant fitness and physiological performance, particularly when microbiomes are vertically transmitted between plant generations [213]. In fact, the soil microbial community can influence plant adaptation to changing conditions; for example, plants were most likely to adapt to drought treatments when their associated microbial communities had evolved under similar conditions [214]. Adaptive plant-bacterial associations occur both belowground, where resource exchange may stabilize coadapted interactions, and aboveground, where bacterial associates provide immune support for plant hosts [reviewed in 215]. The majority of land plants enter into mutualistic associations with a rich diversity of fungal species [216, 217]. Plant associations with viruses have also led to adaptation for resistance and tolerance of pathogenic viruses [218] and to increased tolerance to abiotic stress [219]. Together, plants and microorganisms form a coevolved biological unit of organization (the holobiont) that experiences ecological and evolutionary processes jointly [220]. Holobionts, in which hosts and microbes are adapted to each other, represent specialized systems [221], that may be influenced by abiotic conditions. Thus, to predict outcomes of plant-microbe interactions under changing environments, it is helpful to include microbes as part of a holistic organismal response to environmental conditions, both in co-adapted holobionts and in novel interactions. We suggest expanding the classical definition of 'resident genotypes' in locally-adapted demes [222] to include host-associated microbes, which could result in more realistic predictions of plant responses to global change. Indeed, a recent review, suggested that microbes contribute 'extra' genes upon which selection acts [223]. We recognize microbial community dynamics are important in determining host outcomes [213]. However, we focus here on adaptive plant-microbe interactions observed in plant-microbial studies. We encourage future research into the effects of climate change on plants and their microbial associates, and the emergent adaptive potentials therein [224]. 2.4. Effects of changing resource availability on plant-microbial interactions Novel precipitation patterns, elevated atmospheric carbon dioxide and extreme temperatures may exert differential selective pressures on hosts and microbes, changing the adaptive stability of plant-microbial systems. While plants acquire many microbial symbionts from their environment, vertical transmission of microbes and the inheritance of microbe-related alleles between host generations suggest that climate change will impact both incidental plantmicrobe associations as well as those co-evolved over time [225]. The stability and flexibility of adaptive host-microbe systems to abiotic stress depends on genetic and behavioral responses across generations [226], differential reproductive rates and strategies between hosts and microbes, and microbial community interactions [reviewed in 217]. For example, in *Boechera*stricta (Brassicaceae), changing environmental conditions alter leaf microbial communities with impacts on plant fitness across complex abiotic clines [227]. We suggest that it is important to consider the historical and future role of microbial associations with plant hosts in predicting Climate change, especially warming temperatures and novel soil moisture can disrupt abiotic soil conditions, and directly influence microbial communities [228, 229]. For example, drought stress alters soil microbial abundance [230] and shifts microbial community functionality from opportunistic and sensitive taxa toward drought-tolerant taxa, altering soil carbon and mineral processing [231]. Moreover, shifts in soil microbial community structure can accelerate litter decomposition, increase heterotrophic microbial respiration, and release carbon (C) and nutrients into the atmosphere and bioavailable sediment pools [232]. While climate change effects on soil C cycles and plant-soil C interactions are relatively well understood [233], we still know little about the impacts of nutrient cycling on soil microbes, which are indirectly consequential for plants. adaptation to climate change, which will require more fully-reciprocal field studies. Climate change increases microbial enzymatic activity and elevates bioavailable soil N, which increases aboveground plant tissue N pools and foliar δ¹⁵N in experimental warming plots [234]. However, increased N availability may only be temporary, as soil nitrogen was depleted after 2 years of a long-term meadow warming study [235]. In addition
to summer warming, climate change also increases the frequency of freeze/thaw cycles in natural communities [236], which can increase short-term bioavailable N availability, C mineralization, CO₂ release, and N₂O emissions [237-239]. In contrast with higher latitude systems, tropical ecosystems are generally warm and humid yearlong, and bioavailable N and P are already among the most limiting resources for plants [240, 241]. Rising [CO₂] and temperatures further reduce litter quality (increasing C:N and C:P) in these systems [242] and excess eutrophication decreases microbial diversity [243]. Future research should investigate indirect effects of disrupted biogeochemical cycles on plant-microbe associations by asking how climate change affects microbial soil activity, nutrient regulation, and associated plant communities. In particular, studies should urgently concentrate on tropical biodiversity hotspots, which are severely understudied. # 2.5. Abiotic stressors on plant-microbial interactions Thermal tolerance varies between species and genotypes of microbial symbionts in natural plant host systems [244]. Temperature stress influences numerous plant physiological processes, which mediate the interaction with intra- and extra-cellular microbes. For example, heat stress can increase fluidity of plant membranes, thus facilitating systemic infections of microbial pathogens [245, 246]. Additionally, heat stress can create reactive oxygen species that dampen plant immune and defense responses [247], or trigger stomatal closure or cuticle production that limit carbon and nitrogen resources for leaf-associated microbes [248]. Heat may also impact plant microbial associations by disrupting competition between non-pathogenic and pathogenic microbes [249] or inducing host responses that favor certain microbes or microbial genotypes over others [250]. For example, the tropical panic grass *Dichantheliu lanuginosum* (Poaceae) is more heat tolerant when associated with a virus-infected fungal symbiont as compared to the fungal symbiont alone [251]. Understanding the different biological scales at which host-microbial interactions will be impacted by rising temperatures should be explored in community and population frameworks. Climate change is reducing snowpack in high elevation and latitude systems [173]. Under novel snow-free conditions, plants are exposed to frosts that they would not have experienced historically [65]. Extreme cold temperatures in these locations could lead to the formation of intracellular ice crystals, which reduce survival for plants and microbes alike. Cold-adapted organisms exhibit an array of responses to sub-0 °C temperatures that plant genotypes adapted to snow cover may not maintain [252, 253], while beneficial interactions, such as rhizobia nodulation, may decrease under freezing temperatures [254]. Thus, in some systems, elevated global temperatures could have the paradoxical effect of increasing exposure to cold conditions in late winter, early spring, and late fall despite global warming trends. Changing precipitation patterns coupled with warming temperatures will increase drought stress in many regions [1]. Plant adaptations to drought range from physiological adjustments to structural changes such as induction of waxy cuticles and modified root morphology [reviewed in 255]. Thick leaf cuticles attenuate desiccation, but may negatively impact host immune responsiveness to pathogens [256]. Root hair density is positively correlated with both water uptake and rhizosphere abundance of bacterial symbionts in particular [255]. Stomatal pore density and conductance may cool plants and reduce water loss [257] while also mediating microbial access to the plant apoplast and triggering innate immunity against bacterial pathogens [258]. Thus, plant functional traits (e.g., higher stomata density) may improve host adaptation to drought while also regulating interactions with microbes. Changing water availability will impact microbial symbionts differently. For example, drought impacts root-associated bacterial symbionts more negatively than fungal associations [255]. Furthermore, bacterial and fungal functional types may be divergently adapted to abiotic and host factors. For example, drought tends to enrich relative abundance of Gram positive bacteria, such as mutualistic Actinobacteria [259], which may lead to an adaptive shift towards more fungus- and Actinobacteria- plant associations under increasing aridity. However, severe drought can increase fungal pathogen infections, as well, [260] suggesting that the type of interactions may shift based on the severity of stress and plant condition [261]. Finally, drought may impact viruses directly and in the context of the microbial community. All viruses are obligate parasites, though not all are necessarily antagonistic [262]. In one example, infection by each of four RNA viruses improved host survival under drought [263]. In another study, both fungal and viral associations conferred drought resistance to tobacco plants by mediating plant metabolism and the expression of drought resistance genes [264]. Further research into plant virus diversity and virus-plant associations is necessary to better understand how climate change may alter these interactions. Investigating conditional amensalism and drought-triggered mutualism may be a fruitful area for future research, though the outcome of combined drought and pathogen stress is likely pathosystem dependent [260, 265]. Elevated [CO₂] alters plant-microbial interactions. In some studies, elevated [CO₂] increased the abundance of mutualistic mycorrhizal fungi and host root colonization, augmenting plant biomass productivity [266, 267]. Similarly, elevated [CO₂] stimulate rhizobia growth and nitrogen fixation across multiple grass hosts grown under Free-Air Carbon Dioxide Enrichment (FACE) experiments [268]. Elevated [CO₂] could enhance the mutualistic interaction between plant hosts and mycorrhizal associates [269]. Increased [CO₂] may also alter plant-virus interactions. For example, infection with pathogenic Barley Yellow Dwarf Virus (BYDV) attenuated aphid herbivory in wheat plants under elevated [CO₂], but viral incidence of BYDV increased across wheat genotypes [270]. These studies suggest that some aspects of plant-virus interactions may be beneficial under future conditions, but that viral presence may become more common and widespread under elevated [CO₂]. Future research should examine whether [CO₂]-mediated microbial boosts may buffer plants against other stressors associated with climate change. Furthermore, studies regarding leaf-associated microbial responses to elevated [CO₂] are fewer than those focused on soil communities; this gap should be addressed. ### 2.6. Range shifts and plant-microbial interactions Plant-microbe associations will also experience novel biotic conditions as range limits shift [64, 271]. Climate change will alter the distributions of plants, microbes and microbial vectors, which will enable microbes to colonize naïve hosts [272, 273]. Simultaneously, plants will experience microbe communities in their expanding ranges. For example, non-native plants undergoing range expansions may experience enemy release from their co-evolved pathogens [274], but be colonized by novel microbes to which plant immune responses are not adapted. Similarly, microbial dispersal may occur as insect vectors track environmental shifts [275] or through assisted migration (i.e. translocation). Adaptive plant-microbe interactions depend on the degree of evolved cooperation [217], which requires sufficient time for co-adaptation [276]; yet over the short term, plants may be conditionally maladapted to respond to invading microbes. Plants historically isolated from pathogen exposure may be at particular risk of suffering from emergent diseases, especially in circumstances of vectored microbes which may experience rapid range expansions. For example, viruses requiring vector transmission, account for approximately half of emergent plant diseases [277]. For pathogenic viruses like Cucumber Mosaic Virus (CMV), generalist aphid vectors may increase the geographic and host range by infecting new plant populations and species [278] poleward or upslope spread of viral symbionts. [279, 280]. While emergent epidemics are possible, environmental conditions and shifting microbial distributions may also facilitate greater plant survival in new regions because of the emergent and highly intertwined nature of plant-microbial interactions. If mutualistic interactions persist or expand under changing conditions, it is possible that plants survival and fitness may be stable or improve under certain novel environments (Fig. 2). Thus, 'microbial rescue', like ecological and evolutionary rescue, may provide an option for plants experiencing rapid climate change [281]. More research into wild plant-microbe biogeography is needed before the microbial rescue hypothesis can be tested effectively, though it is a compelling framework in which adaptive qualities of all plant-microbial outcomes may be considered [281]. Microbial associations mediate functional host traits in a variety of ways [282], and may contribute to adaptive host responses in some circumstances [227] (Table 3). The complexity of interacting stressors and the biological scale of their interactions is not well understood. Field studies examining standing microbial diversity across environments and between host populations will provide insight into the consequences of plant-microbe interactions under divergent environments. Finally, we echo previous calls for field experiments addressing the adaptive potential of host-microbe symbioses in a systematic way. **Fig. 2**: Theoretical adaptive outcomes for plant-microbe systems under future climate changed scenarios. In this figure, line A predicts plant fitness without adaptive microbes. If plants
inoculated with a particular microbial symbiont perform the same in the future as they have historically (B), the microbe has 'rescued' the host from climate-induced extinction or extirpation. If plants perform better when inoculated with a microbial associate than they have historically, the host-microbe system may have been climate-limited historically (C). Experiments and field work across appropriate environmental gradients may simulate future climate scenarios and provide data to test these graphical hypotheses. **Table 3**: Key studies and hypotheses regarding adaptive plant-microbe interactions under changing abiotic conditions. | Climate-change | Adaptive plant-microbe | Citations | Example mechanisms | Future directions | |-----------------------------|--------------------------------------|--------------|-----------------------------------|--| | mediated stress | symbioses | | | | | Increasing | Drought tolerance conferred | [263, 264, | Water acquisition by below- | What is the fitness impact of microbe-mediated drought | | summer drought | by fungal, bacterial and viral | reviewed in | ground symbionts; microbe- | tolerance? Are drought-tolerant mutualisms more | | | microbes | 283] | mediated delayed desiccation | commonly found in arid environments? | | Winter droughts | Adaptive protection against | [reviewed in | Cold-induced synthesis of | Are there microbial associates that confer direct or indirect | | | freezing-tolerant and cold- | 254] | pathogenesis-related (PR) | benefits to cold-stressed host plants? | | | tolerant pathogens | | proteins | | | Elevated [CO ₂] | Below-ground microbial | [266, | Increased carbon and nitrogen | How does elevated [CO ₂] influence interactions with leaf- | | | symbionts benefit from | reviewed in | exchange between hosts and | associated microbial species and communities? | | | elevated CO ₂ and augment | 268, 269] | symbionts | | | | plant nutrient acquisition | | | | | | Virus infection attenuates | [270] | Viral infection increases | Do host fitness outcomes improve for virus coinfections | | | plant response to elevated | | relative plant performance | with fungal and bacterial mutualists that augment plant | | | $[CO_2]$ | | through elevated leaf nitrogen | nutrients and quality? | | | | | and biomass | | | Heat stress | Fungal endophytes confer | [284] | Symbiotic fungi attenuate | Do heat-tolerant symbiotic interactions improve host | | | heat tolerance in some | | osmolyte production and | fitness? If so, how important is fungi fidelity over | | | habitats | | associated damage when | generational time, and what is the consequence of symbiont | | | | | exposed to heat | loss for offspring? | | | Fungal endophytes infected | [251] | Heat-induced osmolyte | What is the mechanism through which heat affects microbe- | | | by certain viruses can | | concentrations do not rise in the | microbe interactions? Do induced stress mechanisms for the | | | improve host plant thermal | | presence of the virus; | host impact microbial interactions? | | | tolerance | | mechanism unknown | | | Range shifts of | Microbial rescue through | [281] | Associations with microbes | Can microbial mutualists improve host survivorship during | | interacting | host-microbe cooperation | | attenuate novel stressors in the | range shifts or relocation? | | organisms | during host range shifts | | hosts' expanded range | | 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 # 3. Common challenges, methodological advancements, and future directions The persistence of species through anthropogenic climate change depends on their ability to track favorable conditions by shifting distribution ranges [64, 285, 286], acclimate via phenotypic plasticity [12, 287, 288], and evolve adaptations to novel stresses [289]. Most often, combinations of these strategies will be necessary for population persistence, and a central goal in evolutionary ecology has been to disentangle the relative role of these processes in shaping species responses to climate change [290]. Mirroring the multitude and complexity of species responses, a combination of approaches and tools are often needed to examine the relative contributions of distributional shifts, phenotypic plasticity and adaptation to biological responses to rapid global change. Evolutionary ecologists now use combinations of field studies, including provenance trials, reciprocal transplant experiments, and resurrection studies to test key hypotheses about population persistence under climate change. These field approaches offer unique predictive power when conducted in concert with manipulations of climate variables, biotic interactions, or when combined with population dynamics, quantitative genetics and ecological genomics. In this section, we discuss common challenges in the study of ecological and evolutionary responses to climate change, and examine emerging experimental approaches aimed at filling gaps in our understanding of species adaptive potential to global change. # 3.1. On the complexity of simulating global climate change One particular challenge in generating robust predictions is the need to adequately simulate future or past conditions for a given region. Since climate change is simultaneously altering multiple agents of selection, including CO₂, temperature, growing season length, and precipitation patterns [1, 151], studies must use an integrative approach with multifactorial manipulations. Global change factors interact in complex ways, and can have additive, synergistic or antagonistic effects. For example, increased CO₂ may positively affect plant growth, yet these effects are largely offset when associated with warming and drought [291]. Multifactorial experimental manipulations can more realistically simulate future climatic conditions, identify agents of selection, and disentangle the interactive effects of selective drivers [292, 293]. However, few studies have manipulated multiple global change factors simultaneously [294], and such endeavors are often complicated by rapidly growing experimental sizes. In certain regions, one driving selective factor can be identified and used to simulate changes in associated environmental variables. For example, in high-elevation and latitude systems, flowering phenology is mainly driven by timing of snowmelt [293]. In those regions, snow removal manipulations can be used to reduce winter snowpack and simulate advanced snowmelt, which also realistically simulates the associated decreased water availability and prolonged growing seasons [295]. Moreover, multiyear experimental manipulations in natural settings increase ecological realism and capture the complexity of interannual variation in abiotic and biotic conditions [293, 296, 297]. Biological responses to changes in *mean* temperature and precipitation have already been well documented [91, 298]; however, much less work has focused on plant responses to changes in climatic *variability*. Climate change does not proceed at a constant rate; models project increases in frequency and severity of drought events and heat waves in many areas of the world [1, 299], and variability between and within years has become the rule rather than the exception [80]. We need to separate the impact of changes in climate mean values from those produced by changes in the magnitude and/or frequency of extreme events by transitioning from *trend-based* to *event-based* ecological research [300]. Primary studies that compared the effects of events vs. trends found that climatic variability affected population dynamics and community functioning even more than climatic means [301, 302]. For example, one experiment in a tallgrass prairie in Kansas, found that manipulations of the variability in rainfall reduced productivity significantly more than a simple overall 30% reduction in rainfall quantity [303, 304]. Similarly, pronounced changes in phenology, productivity and community composition occurred when grasslands and heath communities were exposed to extreme droughts or heavy rainfall [305-307]. Yet, drought resistance improved when communities experienced recurrent milder drought simulations, and stress memory or soil biotic legacies may enable plants to acclimate to increasing climatic variability [306]. Beyond the severity of extreme events, the timing of events is particularly important [300]. A recent study found that timing, but not frequency, of temperature stress affected the phenology and performance of *A. thaliana* [308]. Periods of accelerated growth and reproduction are generally most susceptible to extreme weather events [65]. Experimental manipulations that simulate variability in the timing, frequency, duration, and severity of extreme events that reflect projections for regional climates will produce more robust predictions about community responses to climate change (Fig. 3). Additionally, populations may differ in their tolerance to climate fluctuations based on past selection in their home sites [309, 310]. Investigating intraspecific variation in responses to climatic variability will inform predictions of the evolutionary potential for adaptation to projected increases in spatial and temporal variability [308]. **Fig. 3**: Event-based ecological experiments can examine the tolerance of populations to climatic variability by manipulating the timing, frequency, duration, and severity of stress experienced by plant populations. The grey blocks represent periods of stress during the growing season (illustration inspired by Fig. 1A from [308]). We can consider experimental rainfall manipulations aimed at investigating the effects of drought stress, though this framework can be adapted to other conditions. Along with control manipulations
that maintain continuous rainfall or drought stress, investigators can manipulate the timing of drought stress (i.e. early or late in the growing season) and the frequency of drought stress (i.e. rare or common). To disentangle the effects of timing and frequency of drought stress, manipulations should keep the amount of rainfall constant across factors. Alternatively, or in parallel, the duration of drought stress can be manipulated by withholding water for different periods of time (i.e. short or long), and severity of drought stress can be simulated by varying the amount of provided rainfall (i.e. low or high). The combination of factor manipulations and experimental levels should reflect regional projections for the climatic variability in the examined abiotic factor. # 3.2. Detecting contemporary evolution We still do not know whether local populations will keep pace with ongoing climate via adaptation [155, 311, 312]. To study contemporary evolution, resurrection approaches can be used in species with dormant propagules (e.g., seeds), where an ancestral base generation is preserved and revived for comparison with descendants under common conditions after several generations of exposure to climate change [313]. Using this approach, researchers can directly quantify evolutionary response to environmental change [314, 315]. For example, studies resurrecting stored seeds, have shown rapid evolution of earlier flowering or seedling emergence following drought [80, 316-318] and warming [319], directional and/or stabilizing selection on flowering time in response to changes in precipitation patterns [80, 320], rapid evolution of phenotypic plasticity in an invasive species [321], and evolution of herbicide resistance [322]. The resurrection approach cannot in itself determine whether evolutionary change is caused by mutation, gene flow, genetic drift or selection, nor can this approach reveal the agent of selection [313]. To evaluate the adaptive nature of evolutionary changes in functional traits, the resurrection approach can be combined with reciprocal transplants across ancestral and descendant environmental conditions; if descendants perform better than ancestors under contemporary conditions, then the evolutionary changes were adaptive [316]. Furthermore, biases can arise in the resurrection approach when the sampled genetic pool is not representative of standing genetic variation within the species, for example when sampling is done too early or late, or on an insufficient number of genotypes [313]. Similarly, selection that occurs during storage of dormant propagules could bias estimates of trait means and lead to over- or underestimates of the extent of evolutionary change [323]. Although early resurrection studies often depended on fortuitously collected seeds, there are now seed collections made specifically to facilitate evolutionary research via future resurrection studies [314]. Coordinated large-scale efforts such as Project Baseline in the US [324], and Back to the Future in Europe [325], ensure the productive continuance of resurrection studies, and offer an unprecedented capacity to monitor and understand contemporary evolution in response to rapid climate change. Few tropical species have been included in these efforts, however, biasing future research to the Global North. We call for funding for seed banking of tropical species, as these habitats harbor the vast diversity of plants globally. Here, we suggest several frameworks that have rarely been explored via resurrection approaches. Combining the resurrection approach with population genomics has started to shed light on the genetic basis of evolutionary change to altered climatic conditions [313, 326] and offers an advantage over more traditional landscape or spatial population genomics studies that indirectly infer signatures of selection. Genome-wide DNA or RNA sequencing can be compared between ancestors and descendants to detect changes in allele frequencies or gene expression, 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 and ultimately uncover the genetic basis and mechanisms underlying phenotypic selection in response to climate change [158, 313]. With this method, uncovered evolutionary shifts in allele frequencies were uncovered between ancestral and descendant lines [327], and significant differential gene expression was related to drought stress responses based on available functional gene annotations in *Brassica rapa* [328]. To our knowledge, this complementary approach has never been used in other resurrection systems outside of the context of experimental evolution [326, 329], nor to examine the role of epigenetic responses to climate change [330, 331]. In another novel framework, the resurrection approach was recently used to examine the evolution of thermal performance curves across a plant species' range [332]. Such studies can test whether rapid adaptation and evolutionary rescue are more likely at the leading edge of a species distribution range [286, 333, 334]. Additionally, so far, most resurrection studies have concentrated on evolutionary responses to abiotic components of climate change [313]. However, climate change has also altered biotic interactions (as described in the previous section), imposing selection that has, for example, led to evolutionary changes in plant resistance to herbivory [335, 336] and pollinator availability [117]. The resurrection approach offers a promising avenue to study rapid evolution to changes in biotic interactions between plants and herbivores or pollinators, and to examine co-evolutionary dynamics between species. ## 3.3. Emerging directions One major gap in our understanding of evolutionary responses to climate change is in linking adaptive traits to their underlying molecular basis to facilitate a broader understanding of how adaptations can arise in the face of climate change [337], how local adaptation may facilitate climatic adaptation or be disrupted by climate change [154, 155, 338], or how novel selection shapes genes and gene expression underpinning organismal phenotypes [339]. One particular challenge lies in identifying the genetic basis of intraspecific variation in climatic tolerances, and translating those insights into spatial predictions of current and future range-wide climate adaptation [340, 341]. Quantitative trait locus (QTL) mapping provides a powerful forward genetic approach to linking phenotype to genotypes, and has been applied to short lived plants where recombinant inbred lines (RILs) or near-isogenic lines (NILs) can be generated [337]. For example, two large-effect loci explaining pathogen resistance between locally adapted switchgrass ecotypes [342]. Alternatively, under conditions when the relatedness of individuals in natural populations is unknown and pedigree lines cannot be generated (for long-lived species for example), genome-wide association studies (GWAS) identify genomic regions that exhibit polymorphisms associated with phenotypic variation [343-346]. By combining GWAS approaches with environmental niche models, studies predicted genetic changes of Arabidopsis thaliana populations under future climate change [347]. Furthermore, by using trained and field-validated genome-wide environment selection (GWES) models, followup studies predicted that many A. thaliana populations across the native range will experience more negative selection in the future, with local genotypes having lower fitness due to a diminished degree of local adaptation in the face of climate change, putting populations at evolutionary risk [348]. Similarly, other studies used multivariate community-level models (Generalized Dissimilarity Modelling: GDM, and Gradient Forests: GF) to analyze and map intraspecific adaptive genetic diversity under current or future environmental conditions in balsam poplar (*Populus balsamifera*) [341]. Based on candidate genes (i.e. GIGANTEA-5), rapid turnover in allele frequencies was identified in the north-western portion of balsam poplar's range in response to small changes in temperatures, and models predicted these populations to have the strongest variation in genetic composition in the future. Such studies, integrating spatial modelling with large-scale environmental, phenotypic and genomic population data, will be key to predicting the fate of natural populations and the genetic change needed to track climate change [341, 349, 350]. Furthermore, gene expression patterns shape trait variation in natural populations [351], and affect abiotic stress tolerance and local adaptation to climate [352]. However, discerning the functional implications of variation in gene expression remains challenging, and very little is known about intrinsic and extrinsic factors that drive adaptive evolution via gene expression regulation [339, 353]. Increasing research focus on transcriptomic profiles will further our understanding of the genetic basis of complex traits and interactions between the environment and genetics in trait expression [354, 355]. For example, one recent study examined how winter storms drive rapid phenotypic, regulatory, and genomic shifts in green anole lizards, where gene expression of southern populations shifted towards patterns of northern populations with increased cold tolerance [356]. Such studies shed light on how climatic events can rapidly induce selection at the phenotypic, regulatory and genetic levels. Using phenotypic selection analysis on gene expression patterns across the entire genome, a novel study estimated the strength and type of ongoing selection that acts on gene expression and opened up the possibility of dissecting the factors that drive adaptive evolution via gene expression regulation [339]. However, linking gene expression to fitness remains challenging, thus we have a
poor understanding of the adaptive nature of variation in gene expression and the magnitude of selection that occurs at the regulatory level [339, 353, 357, 358]. #### **Conclusions** 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 In response to unprecedented rates of climate change, plants and their mutualists and natural enemies have already shifted their geographic distributions and adjusted to novel conditions plastically and genetically. However, it is not always clear whether these changes will enable long-term persistence through increasingly novel climates. We have posed a series of research questions and hypotheses aimed at filling critical gaps in our current knowledge about the eco-evolutionary consequences of climate change. We argue that to generate more robust predictions about plant responses to global change, researchers need to integrate across the entire life cycle, from germination to reproduction, in studies that simultaneously manipulate multiple climate change factors. Single factor experiments do not reflect the complexity of contemporary climate change and could result in inaccurate inferences about the stability of populations under future climates. In addition, future studies will illuminate the extent to which specialized biotic interactions may be vulnerable to climate change. These studies could also lead to generalizable predictions about when spatial and temporal mismatches between plants and their mutualists or antagonists could jeopardize plant population growth. Resurrection approaches can evaluate the extent to which local populations have already adapted to climate-change mediated shifts in biotic interactions and abiotic conditions. Once such studies have been conducted in a diversity of systems, researchers will be able to test which characteristics enable rapid adaptation and which traits constrain adaptive responses to novel conditions. Such generalizations could inform conservation priorities. Emerging genomic and transcriptomic tools that dissect the genetic basis of climate change responses could test whether metapopulations can adapt to ongoing environmental change through standing genetic variation and provide key information for improving the efficacy of conservation strategies like assisted migration. We call for additional | funding to support holistic manipulative experiments aimed at resolving the ecological and evolutionary consequences of climate change, especially in tropical ecosystems. | |--| | Acknowledgements: We thank Tom Pendergast for discussion on previous drafts. The Anderson lab is supported by the U.S. National Science Foundation (DEB-1553408 and DEB-1655732). | #### **REFERENCES** 773 - 775 [1] IPCC, Climate Change 2014: Synthesis Report, Contribution of Working Groups I, II and III 776 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, in: - 777 R.K.P.a.L.A.M.e. [Core Writing Team (Ed.), Geneva, Switzerland, 2014. - 778 [2] D.L. Ficklin, K.A. Novick, Historic and projected changes in vapor pressure deficit suggest a 779 continental-scale drying of the United States atmosphere, J Geophys Res-Atmos, 122 (2017) 780 2061-2079. - [3] A.K. Knapp, D.L. Hoover, K.R. Wilcox, M.L. Avolio, S.E. Koerner, K.J. La Pierre, M.E. Loik, 781 - 782 Y. Luo, O.E. Sala, M.D. Smith, Characterizing differences in precipitation regimes of extreme - 783 wet and dry years: implications for climate change experiments, Glob Chang Biol, 21 (2015) 784 2624-2633. - 785 - [4] C. Bellard, C. Bertelsmeier, P. Leadley, W. Thuiller, F. Courchamp, Impacts of climate change on the future of biodiversity, Ecol. Lett., 15 (2012) 365-377. 786 - 787 [5] K.M. Becklin, J.T. Anderson, L.M. Gerhart, S.M. Wadgymar, C.A. Wessinger, J.K. Ward, - 788 Examining Plant Physiological Responses to Climate Change through an Evolutionary Lens, 789 Plant Physiol., 172 (2016) 635-649. - [6] B.G. Drake, M.A. Gonzalez-Meler, S.P. Long, More efficient plants: A Consequence of 790 - 791 Rising Atmospheric CO2?, Annu Rev Plant Physiol Plant Mol Biol, 48 (1997) 609-639. - 792 [7] J.L. Walck, S.N. Hidayati, K.W. Dixon, K.E.N. Thompson, P. Poschlod, Climate change and 793 plant regeneration from seed, Global Change Biology, 17 (2011) 2145-2161. - 794 [8] W.J. Davies, Responses of Plant Growth and Functioning to Changes in Water Supply in a 795 Changing Climate, in: Plant Growth and Climate Change, 2006, pp. 96-117. - 796 [9] C.J. Springer, J.K. Ward, Flowering time and elevated atmospheric CO2, New Phytol, 176 797 (2007) 243-255. - 798 [10] A.S. Gallinat, R.B. Primack, D.L. Wagner, Autumn, the neglected season in climate change 799 research, Trends Ecol Evol, 30 (2015) 169-176. - [11] Y.H. Fu, S. Piao, N. Delpierre, F. Hao, H. Hänninen, Y. Liu, W. Sun, I.A. Janssens, M. 800 - 801 Campioli, Larger temperature response of autumn leaf senescence than spring leaf-out 802 phenology, 24 (2018) 2159-2168. - 803 [12] A.B. Nicotra, O.K. Atkin, S.P. Bonser, A.M. Davidson, E.J. Finnegan, U. Mathesius, P. Poot, - 804 M. Purugganan, C.L. Richards, F. Valladares, M. van Kleunen, Plant phenotypic plasticity in a 805 changing climate, Trends in Plant Science, 15 (2010) 684-692. - 806 [13] S.N. Aitken, M.C. Whitlock, Assisted Gene Flow to Facilitate Local Adaptation to Climate - 807 Change, Annual Review of Ecology, Evolution, and Systematics, 44 (2013) 367-388. - 808 [14] H. Nonogaki, G.W. Bassel, J.D. Bewley, Germination—Still a mystery, Plant Science, 179 809 (2010) 574-581. - [15] K. Donohue, R. Rubio de Casas, L. Burghardt, K. Kovach, C.G. Willis, Germination, 810 - 811 Postgermination Adaptation, and Species Ecological Ranges, Annual Review of Ecology, - 812 Evolution, and Systematics, 41 (2010) 293-319. - 813 [16] C. Parmesan, M.E. Hanley, Plants and climate change: complexities and surprises, Ann - 814 Bot, 116 (2015) 849-864. - 815 [17] W. Finch-Savage, K. Phelps, Onion (Allium cepa L.) seedling emergence patterns can be - explained by the influence of soil temperature and water potential on seed germination, J. Exp. 816 - 817 Bot., 44 (1993) 407-414. - 818 [18] E. Roberts, Temperature and seed germination, in: Symposia of the Society for - 819 Experimental Biology, 1988, pp. 109. - 820 [19] G.L. Hoyle, K.J. Steadman, R.B. Good, E.J. McIntosh, L.M. Galea, A.B. Nicotra, Seed - 821 germination strategies: an evolutionary trajectory independent of vegetative functional traits, - 822 Front Plant Sci, 6 (2015) 731. - 823 [20] M.K.J. Ooi, T.D. Auld, A.J. Denham, Projected soil temperature increase and seed - 824 dormancy response along an altitudinal gradient: implications for seed bank persistence under - 825 climate change, Plant and Soil, 353 (2012) 289-303. - 826 [21] G.K. Jaganathan, J. Li, M. Biddick, K. Han, D. Song, Y. Yang, Y. Han, B. Liu, Mechanisms - 827 underpinning the onset of seed coat impermeability and dormancy-break in Astragalus - 828 adsurgens, Scientific Reports, 9 (2019) 9695. - 829 [22] A. Mondoni, G. Rossi, S. Orsenigo, R.J. Probert, Climate warming could shift the timing of - 830 seed germination in alpine plants, Ann Bot, 110 (2012) 155-164. - 831 [23] P. De Frenne, J. Brunet, A. Shevtsova, A. Kolb, B.J. Graae, O. Chabrerie, S.A. Cousins, G. - 832 Decocq, A. De Schrijver, M. Diekmann, R. Gruwez, T. Heinken, M. Hermy, C. Nilsson, S. - 833 Stanton, W. Tack, J. Willaert, K. Verheyen, Temperature effects on forest herbs assessed by - 834 warming and transplant experiments along a latitudinal gradient, Global Change Biology, 17 835 (2011) 3240-3253. - [24] J. Flores, R.M. Pérez-Sánchez, E. Jurado, The combined effect of water stress and 836 - 837 temperature on seed dermination of Chihuahuan Desert species, J. Arid, Environ., 146 (2017) 838 - 839 [25] F. Gray, A. Cochrane, P. Poot, Provenance modulates sensitivity of stored seeds of the - 840 Australian native grass Neurachne alopecuroidea to temperature and moisture availability, Aust. - 841 J. Bot., 67 (2019). - 842 [26] J.A. Cochrane, Thermal Requirements Underpinning Germination Allude to Risk of Species - 843 Decline from Climate Warming, Plants, 9 (2020). - 844 [27] P.A. Tuan, R. Kumar, P.K. Rehal, P.K. Toora, B.T. Ayele, Molecular Mechanisms - 845 Underlying Abscisic Acid/Gibberellin Balance in the Control of Seed Dormancy and Germination 846 in Cereals, Frontiers in Plant Science, 9 (2018). - 847 [28] A. Saatkamp, A. Cochrane, L. Commander, L.K. Guja, B. Jimenez-Alfaro, J. Larson, A. - 848 Nicotra, P. Poschlod, F.A.O. Silveira, A.T. Cross, E.L. Dalziell, J. Dickie, T.E. Erickson, A. - 849 Fidelis, A. Fuchs, P.J. Golos, M. Hope, W. Lewandrowski, D.J. Merritt, B.P. Miller, R.G. Miller, - 850 C.A. Offord, M.K.J. Ooi, A. Satyanti, K.D. Sommerville, R. Tangney, S. Tomlinson, S. Turner, - 851 J.L. Walck, A research agenda for seed-trait functional ecology, New Phytol, 221 (2019) 1764-852 1775. - 853 [29] J.L. Aragón-Gastélum, J. Flores, E. Jurado, H.M. Ramírez-Tobías, E. Robles-Díaz, J.P. - 854 Rodas-Ortiz, L. Yáñez-Espinosa, Potential impact of global warming on seed bank, dormancy - and germination of three succulent species from the Chihuahuan Desert, Seed Science 855 - 856 Research, 28 (2018) 312-318. - 857 [30] R.J. Newton, F.R. Hay, R.H. Ellis, Temporal patterns of seed germination in early spring- - 858 flowering temperate woodland geophytes are modified by warming, Annals of Botany, 125 - 859 (2020) 1013-1023. - 860 [31] R.J. Probert, The role of temperature in the regulation of seed dormancy and germination - 861 in: M. Fenner (Ed.) Seeds: the ecology of regeneration in plant communities, Cabi, 2000. - 862 [32] P.R. Ribeiro, L.A.J. Willems, A.T. Silva, L.G. Fernandez, R.D. de Castro, J. Bucher,
B.L. - 863 Snoek, H.W.M. Hilhorst, W. Ligterink, Transcriptome profiling of Ricinus communis L. provides - 864 new insights underlying the mechanisms towards thermotolerance during seed imbibition and - 865 germination, Industrial Crops and Products, 126 (2018) 380-393. - [33] G. Wang, C.C. Baskin, J.M. Baskin, X. Yang, G. Liu, X. Ye, X. Zhang, Z. Huang, Effects of 866 - climate warming and prolonged snow cover on phenology of the early life history stages of four 867 - 868 alpine herbs on the southeastern Tibetan Plateau, Am J Bot, 105 (2018) 967-976. - 869 [34] A. Cochrane, Can sensitivity to temperature during germination help predict global warming - 870 vulnerability?, Seed Science Research, 26 (2015) 14-29. - 871 [35] J.A. Cochrane, G.L. Hoyle, C.J. Yates, J. Wood, A.B. Nicotra, Climate warming delays and - 872 decreases seedling emergence in a Mediterranean ecosystem, Oikos, 124 (2015) 150-160. - 873 [36] A.T. Sentinella, D.I. Warton, W.B. Sherwin, C.A. Offord, A.T. Moles, Tropical plants do not - have narrower temperature tolerances, but are more at risk from warming because they are - close to their upper thermal limits, Global Ecology and Biogeography, 29 (2020) 1387-1398. - 876 [37] J.R. Gremer, A. Chiono, E. Suglia, M. Bontrager, L. Okafor, J. Schmitt, Variation in the - seasonal germination niche across an elevational gradient: the role of germination cueing in - 878 current and future climates, Am J Bot, 107 (2020) 350-363. - 879 [38] Y. Chen, X. Shi, L. Zhang, J.M. Baskin, C.C. Baskin, H. Liu, D. Zhang, Effects of increased - precipitation on the life history of spring- and autumn-germinated plants of the cold desert - annual Erodium oxyrhynchum (Geraniaceae), AoB Plants, 11 (2019) plz004. - [39] L. Torres-Martinez, P. Weldy, M. Levy, N.C. Emery, Spatiotemporal heterogeneity in - precipitation patterns explain population-level germination strategies in an edaphic specialist, - 884 Ann Bot, 119 (2017) 253-265. - [40] F. Yi, Z. Wang, C.C. Baskin, J.M. Baskin, R. Ye, H. Sun, Y. Zhang, X. Ye, G. Liu, X. Yang, - 886 Z. Huang, Seed germination responses to seasonal temperature and drought stress are - species-specific but not related to seed size in a desert steppe: Implications for effect of climate - change on community structure, Ecology and Evolution, 9 (2019) 2149-2159. - 889 [41] B.F. Dantas, M.S.B. Moura, C.R. Pelacani, F. Angelotti, T.A. Taura, G.M. Oliveira, J.S. - Bispo, J.R. Matias, F.F.S. Silva, H.W. Pritchard, C.E. Seal, Rainfall, not soil temperature, will - limit the seed germination of dry forest species with climate change, Oecologia, 192 (2020) 529-541. - 893 [42] J.G. Hampton, B. Boelt, M.P. Rolston, T.G. Chastain, Effects of elevated CO2 and - temperature on seed quality, The Journal of Agricultural Science, 151 (2013) 154-162. - 895 [43] J. Li, L. Ren, Y. Bai, D. Lecain, D. Blumenthal, J. Morgan, Seed traits and germination of - native grasses and invasive forbs are largely insensitive to parental temperature and CO2 - 897 concentration, Seed Science Research, 28 (2018) 303-311. - 898 [44] B. Thurig, C. Korner, J. Stocklin, Seed production and seed quality in a calcareous - grassland in elevated CO2, Global Change Biol, 9 (2003) 873-884. - 900 [45] K. Hikosaka, T. Kinugasa, S. Oikawa, Y. Onoda, T. Hirose, Effects of elevated CO2 - 901 concentration on seed production in C3 annual plants, J Exp Bot, 62 (2011) 1523-1530. - 902 [46] Y. Ding, Y. Shi, S. Yang, Molecular Regulation of Plant Responses to Environmental Temperatures, Mol Plant, 13 (2020) 544-564. - 904 [47] M.E. Dusenge, S. Madhavji, D.A. Way, Contrasting acclimation responses to elevated CO2 - and warming between an evergreen and a deciduous boreal conifer, Glob Chang Biol, 26 (2020) 3639-3657. - 907 [48] K.S. Sheldon, Climate Change in the Tropics: Ecological and Evolutionary Responses at - 908 Low Latitudes, Annual Review of Ecology, Evolution, and Systematics, 50 (2019) 303-333. - 909 [49] S. O'Sullivan O, M.A. Heskel, P.B. Reich, M.G. Tjoelker, L.K. Weerasinghe, A. Penillard, L. - 210 Zhu, J.J. Egerton, K.J. Bloomfield, D. Creek, N.H. Bahar, K.L. Griffin, V. Hurry, P. Meir, M.H. - 911 Turnbull, O.K. Atkin, Thermal limits of leaf metabolism across biomes, Glob Chang Biol, 23 - 912 (2017) 209-223. - 913 [50] J.L. Hatfield, C. Dold, Water-Use Efficiency: Advances and Challenges in a Changing - 914 Climate, Front Plant Sci, 10 (2019) 103. - 915 [51] M.M. Qaderi, L.V. Kurepin, D.M. Reid, Growth and physiological responses of canola - 916 (Brassica napus) to three components of global climate change: temperature, carbon dioxide - 917 and drought, Physiol. Plant., 128 (2006) 710-721. - 918 [52] Y. Osakabe, K. Osakabe, K. Shinozaki, L.S. Tran, Response of plants to water stress, Front - 919 Plant Sci, 5 (2014) 86. - 920 [53] S.C. Bertolli, G.M. Souza, The level of environmental noise affects the physiological - 921 performance of Glycine max under water deficit, Theor Exp Plant Phys, 25 (2013) 36-45. - 922 [54] P.B. Reich, K.M. Sendall, A. Stefanski, R.L. Rich, S.E. Hobbie, R.A. Montgomery, Effects of - 923 climate warming on photosynthesis in boreal tree species depend on soil moisture, Nature, 562 - 924 (2018) 263-267. - 925 [55] S. Niu, Y. Luo, D. Li, S. Cao, J. Xia, J. Li, M.D. Smith, Plant growth and mortality under - 926 climatic extremes: An overview, Environmental and Experimental Botany, 98 (2014) 13-19. - 927 [56] P.J.A. Vervuren, C.W.P.M. Blom, H. de Kroon, Extreme flooding events on the Rhine and - 928 the survival and distribution of riparian plant species, Journal of Ecology, 91 (2003) 135-146. - 929 [57] T.B.B. Bishop, B.C. Nusink, R. Lee Molinari, J.B. Taylor, S.B. St. Clair, Earlier fall - 930 precipitation and low severity fire impacts on cheatgrass and sagebrush establishment, - 931 Ecosphere, 11 (2020) e03019. - 932 [58] M.G. Nafus, T.D. Tuberville, K.A. Buhlmann, B.D. Todd, Precipitation quantity and timing - 933 affect native plant production and growth of a key herbivore, the desert tortoise, in the Mojave - 934 Desert, Climate Change Responses, 4 (2017) 4. - 935 [59] M.E. Dusenge, A.G. Duarte, D.A. Way, Plant carbon metabolism and climate change: - elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration, - 937 New Phytol, 221 (2019) 32-49. - 938 [60] L.H. Ziska, J.A. Bunce, Plant Responses to Rising Atmospheric Carbon Dioxide, in: Plant - 939 Growth and Climate Change, 2006, pp. 17-47. - 940 [61] Z. Xu, Y. Jiang, B. Jia, G. Zhou, Elevated-CO2 Response of Stomata and Its Dependence - on Environmental Factors, Front Plant Sci, 7 (2016) 657. - 942 [62] P.B. Reich, S.E. Hobbie, T.D. Lee, M.A. Pastore, Unexpected reversal of C3 versus C4 - grass response to elevated CO2 during a 20-year field experiment, Science, 360 (2018) 317-944 320. - 945 [63] M. Hovenden, P. Newton, Plant responses to CO2 are a question of time, Science, 360 - 946 (2018) 263-264. - 947 [64] C. Parmesan, G. Yohe, A globally coherent fingerprint of climate change impacts across - 948 natural systems, Nature, 421 (2003) 37-42. - 949 [65] D.W. Inouye, Effects of climate change on phenology, frost damage, and floral abundance - 950 of montane wildflowers, Ecology, 89 (2008) 353-362. - 951 [66] E.M. Wolkovich, B.I. Cook, J.M. Allen, T.M. Crimmins, J.L. Betancourt, S.E. Travers, S. - 952 Pau, J. Regetz, T.J. Davies, N.J. Kraft, T.R. Ault, K. Bolmgren, S.J. Mazer, G.J. McCabe, B.J. - 953 McGill, C. Parmesan, N. Salamin, M.D. Schwartz, E.E. Cleland, Warming experiments - underpredict plant phenological responses to climate change, Nature, 485 (2012) 494-497. - 955 [67] L.M. Moore, W.K. Lauenroth, Differential effects of temperature and precipitation on early-956 vs. late-flowering species, Ecosphere, 8 (2017) e01819. - 957 [68] Z. Zhou, Y. Li, J. Song, J. Ru, L. Lei, M. Zhong, M. Zheng, A. Zhang, D. Hui, S. Wan, - 958 Growth controls over flowering phenology response to climate change in three temperate - 959 steppes along a precipitation gradient, Agricultural and Forest Meteorology, 274 (2019) 51-60. - 960 [69] N.E. Rafferty, J.M. Diez, C.D. Bertelsen, Changing Climate Drives Divergent and Nonlinear - 961 Shifts in Flowering Phenology across Elevations, Curr Biol, 30 (2020) 432-441 e433. - 962 [70] J.B. Bemmels, J.T. Anderson, Climate change shifts natural selection and the adaptive - 963 potential of the perennial forb Boechera stricta in the Rocky Mountains, Evolution, 73 (2019) - 964 2247-2262. - 965 [71] S. Pau, E.M. Wolkovich, B.I. Cook, C.J. Nytch, J. Regetz, J.K. Zimmerman, S. Joseph - 966 Wright, Clouds and temperature drive dynamic changes in tropical flower production, Nature - 967 Climate Change, 3 (2013) 838-842. - 968 [72] K.E. Zinn, M. Tunc-Ozdemir, J.F. Harper, Temperature stress and plant sexual - 969 reproduction: uncovering the weakest links, J Exp Bot, 61 (2010) 1959-1968. - 970 [73] J.L. Hatfield, J.H. Prueger, Temperature extremes: Effect on plant growth and development, - 971 Weather Clim Extreme, 10 (2015) 4-10. - 972 [74] E. Pacini, R. Dolferus, Pollen Developmental Arrest: Maintaining Pollen Fertility in a World - 973 With a Changing Climate, Front Plant Sci, 10 (2019) 679. - 974 [75] C. van Leeuwen, P. Darriet, The Impact of Climate Change on Viticulture and Wine Quality, - 975 Journal of Wine Economics, 11 (2016) 150-167. - 976 [76] C.L. Moretti, L.M. Mattos, A.G. Calbo, S.A. Sargent, Climate changes and potential impacts - on postharvest quality of fruit and vegetable crops: A review, Food Research International, 43 (2010) 1824-1832. - 979 [77] S.B. Gray, S.M. Brady, Plant developmental responses to climate change, Dev Biol, 419 980 (2016) 64-77. - 981 [78] L. Rowland, A.C.L. da Costa, A.A.R. Oliveira, S.S. Almeida, L.V. Ferreira, Y. Malhi, D.B. - 982 Metcalfe, M. Mencuccini, J. Grace, P. Meir, Shock and stabilisation following long-term drought - in tropical forest from 15 years of litterfall dynamics, Journal of Ecology, 106 (2018) 1673-1682. - 984 [79] R. Alfaro-Sanchez, H.C.
Muller-Landau, S.J. Wright, J.J. Camarero, Growth and - reproduction respond differently to climate in three Neotropical tree species, Oecologia, 184 (2017) 531-541. - 987 [80] E. Hamann, A.E. Weis, S.J. Franks, Two decades of evolutionary changes in Brassica rapa in response to fluctuations in precipitation and severe drought, Evolution, 72 (2018) 2682-2696. - 989 [81] S.C. Lambrecht, A.K. Gujral, L.J. Renshaw, L.T. Rosengreen, Evolutionary and plastic - changes in a native annual plant after a historic drought, Ecol Evol, 10 (2020) 4570-4582. - 991 [82] A.M. Lambert, A.J. Miller-Rushing, D.W. Inouye, Changes in snowmelt date and summer - 992 precipitation affect the flowering phenology of Erythronium grandiflorum (glacier lily; Liliaceae), - 993 American Journal of Botany, 97 (2010) 1431-1437. - 994 [83] G. Kudo, Dynamics of flowering phenology of alpine plant communities in response to - temperature and snowmelt time: Analysis of a nine-year phenological record collected by citizen - 996 volunteers, Environmental and Experimental Botany, 170 (2020) 103843. - 997 [84] J.K. Ward, B.R. Strain, Elevated CO(2) studies: past, present and future, Tree Physiol, 19 (1999) 211-220. - 999 [85] J. Wang, C. Wang, N. Chen, Z. Xiong, D. Wolfe, J. Zou, Response of rice production to - elevated [CO2] and its interaction with rising temperature or nitrogen supply: a meta-analysis, - 1001 Climatic Change, 130 (2015) 529-543. - 1002 [86] L. Wang, Z. Feng, J.K. Schjoerring, Effects of elevated atmospheric CO2 on physiology and - 1003 yield of wheat (Triticum aestivum L.): a meta-analytic test of current hypotheses, Agriculture, - 1004 Ecosystems & Environment, 178 (2013) 57-63. - 1005 [87] S.V. Jagadish, R.N. Bahuguna, M. Djanaguiraman, R. Gamuyao, P.V. Prasad, P.Q. - 1006 Craufurd, Implications of High Temperature and Elevated CO2 on Flowering Time in Plants, - 1007 Front Plant Sci, 7 (2016) 913. - 1008 [88] R.F. Sage, D.S. Kubien, The temperature response of C(3) and C(4) photosynthesis, Plant Cell Environ, 30 (2007) 1086-1106. - 1010 [89] L. Hughes, Biological consequences of global warming: is the signal already apparent?, - 1011 Trends in Ecology & Evolution, 15 (2000) 56-61. - 1012 [90] D.A. Way, R. Oren, Differential responses to changes in growth temperature between trees - from different functional groups and biomes: a review and synthesis of data, Tree Physiol, 30 (2010) 669-688. - 1015 [91] Z. Wu, P. Dijkstra, G.W. Koch, J. Peñuelas, B.A. Hungate, Responses of terrestrial - 1016 ecosystems to temperature and precipitation change: a meta-analysis of experimental - manipulation, Global Change Biology, 17 (2011) 927-942. - 1018 [92] M. Lindner, M. Maroschek, S. Netherer, A. Kremer, A. Barbati, J. Garcia-Gonzalo, R. Seidl, - 1019 S. Delzon, P. Corona, M. Kolström, M.J. Lexer, M. Marchetti, Climate change impacts, adaptive - 1020 capacity, and vulnerability of European forest ecosystems, Forest Ecology and Management, - 1021 259 (2010) 698-709. - 1022 [93] L. Korell, H. Auge, J.M. Chase, S. Harpole, T.M. Knight, We need more realistic climate - 1023 change experiments for understanding ecosystems of the future, Glob Chang Biol, 26 (2020) - 1024 325-327. - [94] C. Terrer, R.B. Jackson, I.C. Prentice, T.F. Keenan, C. Kaiser, S. Vicca, J.B. Fisher, P.B. 1025 - 1026 Reich, B.D. Stocker, B.A. Hungate, J. Peñuelas, I. McCallum, N.A. Soudzilovskaia, L.A. - 1027 Cernusak, A.F. Talhelm, K. Van Sundert, S. Piao, P.C.D. Newton, M.J. Hovenden, D.M. - 1028 Blumenthal, Y.Y. Liu, C. Müller, K. Winter, C.B. Field, W. Viechtbauer, C.J. Van Lissa, M.R. - 1029 Hoosbeek, M. Watanabe, T. Koike, V.O. Leshyk, H.W. Polley, O. Franklin, Nitrogen and - 1030 phosphorus constrain the CO2 fertilization of global plant biomass, Nature Climate Change, 9 1031 (2019) 684-689. - 1032 [95] P.J. Hanson, A.P. Walker, Advancing global change biology through experimental - 1033 manipulations: Where have we been and where might we go?, Glob Chang Biol, 26 (2020) 287-1034 - 1035 [96] C. Grossiord, T.N. Buckley, L.A. Cernusak, K.A. Novick, B. Poulter, R.T.W. Siegwolf, J.S. - 1036 Sperry, N.G. McDowell, Plant responses to rising vapor pressure deficit, New Phytol, 226 (2020) 1037 1550-1566. - 1038 [97] D.W. Inouye, Effects of climate change on alpine plants and their pollinators, Ann N Y Acad 1039 Sci, n/a (2019). - 1040 [98] V.L. DeLeo, D.N.L. Menge, E.M. Hanks, T.E. Juenger, J.R. Lasky, Effects of two centuries - 1041 of global environmental variation on phenology and physiology of Arabidopsis thaliana, Glob - 1042 Chang Biol. (2019). - 1043 [99] M.E. Visser, P. Gienapp, Evolutionary and demographic consequences of phenological - 1044 mismatches, Nat Ecol Evol, 3 (2019) 879-885. - 1045 [100] H.M. Kharouba, E.M. Wolkovich, Disconnects between ecological theory and data in - 1046 phenological mismatch research, Nature Climate Change, 10 (2020) 406-415. - 1047 [101] A.J. Miller-Rushing, T.T. Høye, D.W. Inouye, E. Post, The effects of phenological - 1048 mismatches on demography, Philosophical transactions of the Royal Society of London. Series 1049 - B, Biological sciences, 365 (2010) 3177-3186. - 1050 [102] J.R.K. Forrest, Plant-pollinator interactions and phenological change: what can we learn - 1051 about climate impacts from experiments and observations?, Oikos, 124 (2015) 4-13. - 1052 [103] K.D. Pearson, Spring- and fall-flowering species show diverging phenological responses - 1053 to climate in the Southeast USA, Int J Biometeorol, 63 (2019) 481-492. - 1054 [104] I. Mendoza, C.A. Peres, L.P.C. Morellato, Continental-scale patterns and climatic drivers - 1055 of fruiting phenology: A quantitative Neotropical review, Global and Planetary Change, 148 1056 (2017) 227-241. - 1057 [105] A. Bock, T.H. Sparks, N. Estrella, N. Jee, A. Casebow, C. Schunk, M. Leuchner, A. - 1058 Menzel, Changes in first flowering dates and flowering duration of 232 plant species on the - 1059 island of Guernsey, Glob Chang Biol, 20 (2014) 3508-3519. - 1060 [106] S.F. Bucher, C. Römermann, Flowering patterns change along elevational gradients and - 1061 relate to life-history strategies in 29 herbaceous species, Alpine Botany, 130 (2020) 41-58. - 1062 [107] S. Gugger, H. Kesselring, J. Stöcklin, E. Hamann, Lower plasticity exhibited by high- - 1063 versus mid-elevation species in their phenological responses to manipulated temperature and 1064 drought, Annals of Botany, 116 (2015) 953-962. - 1065 [108] R.A. Sherry, X. Zhou, S. Gu, J.A. Arnone, 3rd, D.S. Schimel, P.S. Verburg, L.L. Wallace, - 1066 Y. Luo, Divergence of reproductive phenology under climate warming, Proc Natl Acad Sci U S - 1067 A, 104 (2007) 198-202. - 1068 [109] T. Lorieul, K.D. Pearson, E.R. Ellwood, H. Goëau, J.-F. Molino, P.W. Sweeney, J.M. Yost, - 1069 J. Sachs, E. Mata-Montero, G. Nelson, P.S. Soltis, P. Bonnet, A. Joly, Toward a large-scale and - 1070 deep phenological stage annotation of herbarium specimens: Case studies from temperate. - 1071 tropical, and equatorial floras, Appl Plant Sci, 7 (2019) e01233. - 1072 [110] S.C.H. Barrett, Mating strategies in flowering plants: the outcrossing–selfing paradigm and beyond, Philos. Trans. R. Soc. Lond. B Biol. Sci., 358 (2003) 991-1004. - 1074 [111] C.G. Eckert, S. Kalisz, M.A. Geber, R. Sargent, E. Elle, P.O. Cheptou, C. Goodwillie, M.O. - Johnston, J.K. Kelly, D.A. Moeller, E. Porcher, R.H. Ree, M. Vallejo-Marin, A.A. Winn, Plant - mating systems in a changing world, Trends Ecol Evol, 25 (2010) 35-43. - 1077 [112] C. Goodwillie, S. Kalisz, C.G. Eckert, The Evolutionary Enigma of Mixed Mating Systems - in Plants: Occurrence, Theoretical Explanations, and Empirical Evidence, Annu. Rev. Ecol. - 1079 Evol. Syst., 36 (2005) 47-79. - 1080 [113] A.R. Hughes, A. Randall Hughes, B.D. Inouye, M.T.J. Johnson, N. Underwood, M. - Vellend, Ecological consequences of genetic diversity, Ecology Letters, 11 (2008) 609-623. - 1082 [114] S. Kalisz, D.W. Vogler, K.M. Hanley, Context-dependent autonomous self-fertilization - 1083 yields reproductive assurance and mixed mating, Nature, 430 (2004) 884-887. - 1084 [115] R. Lande, D.W. Schemske, The Evolution of Self-Fertilization and Inbreeding Depression - 1085 in Plants. I. Genetic Models, Evolution, 39 (1985) 24-40. - 1086 [116] S.G. Potts, J.C. Biesmeijer, C. Kremen, P. Neumann, O. Schweiger, W.E. Kunin, Global - pollinator declines: trends, impacts and drivers, Trends Ecol Evol, 25 (2010) 345-353. - 1088 [117] S.E. Ramos, F.P. Schiestl, Rapid plant evolution driven by the interaction of pollination and herbivory, Science, 364 (2019) 193-196. - 1090 [118] B. Stojanova, V. Koláříková, M. Šurinová, J. Klápště, V. Hadincová, Z. Münzbergová, - Evolutionary potential of a widespread clonal grass under changing climate, J. Evol. Biol., 32 (2019) 1057-1068. - 1093 [119] T.M. Knight, J.A. Steets, J.C. Vamosi, S.J. Mazer, M. Burd, D.R. Campbell, M.R. Dudash, - M.O. Johnston, R.J. Mitchell, T.-L. Ashman, Pollen limitation of plant reproduction: pattern and - 1095 process, Annu. Rev. Ecol. Evol. Syst., 36 (2005) 467-497. - 1096 [120] H.G. Davis, C.M. Taylor, J.G. Lambrinos, D.R. Strong, Pollen limitation causes an Allee - 1097 effect in a wind-pollinated invasive grass (Spartina alterniflora), Proceedings of the National - 1098 Academy of Sciences of the United States of America, 101 (2004) 13804. - 1099 [121] A. Durvasula, A. Fulgione, R.M. Gutaker, S.I. Alacakaptan, P.J. Flood, C. Neto, T. - 1100 Tsuchimatsu, H.A. Burbano, F.X. Picó, C. Alonso-Blanco, A.M. Hancock, African genomes - 1101 illuminate the early history and transition to selfing in Arabidopsis thaliana, Proc. Natl. Acad. Sci. - 1102 U. S. A., 114 (2017) 5213-5218. - 1103 [122] R. Leimu, P. Vergeer, F. Angeloni, N.J. Ouborg, Habitat fragmentation, climate change, - and inbreeding in plants, Annals of the New York Academy of Sciences, 1195 (2010) 84-98. - 1105 [123] A.L. Hargreaves, C.G. Eckert, Evolution of dispersal and mating systems along - 1106 geographic gradients:
implications for shifting ranges, Functional Ecology, 28 (2014) 5-21. - 1107 [124] J. Clo, L. Gay, J. Ronfort, How does selfing affect the genetic variance of quantitative - traits? An updated meta-analysis on empirical results in angiosperm species, Evolution, 73 - 1109 (2019) 1578-1590. - 1110 [125] M.L. Peterson, K.M. Kay, Mating system plasticity promotes persistence and adaptation of - 1111 colonizing populations of hermaphroditic angiosperms, Am. Nat., 185 (2015) 28-43. - 1112 [126] P. Armbruster, D. Reed, Inbreeding depression in benign and stressful environments, - 1113 Heredity, 95 (2005) 235-242. - 1114 [127] C.W. Fox, D.H. Reed, Inbreeding depression increases with environmental stress: an - 1115 experimental study and meta-analysis, Evolution, 65 (2011) 246-258. - 1116 [128] N.T. Jones, B.C. Husband, A.S. MacDougall, Reproductive system of a mixed-mating - 1117 plant responds to climate perturbation by increased selfing, Proc Biol Sci, 280 (2013) 20131336. - 1118 [129] P.-O. Cheptou, A. Berger, A. Blanchard, C. Collin, J. Escarre, The effect of drought stress - on inbreeding depression in four populations of the Mediterranean outcrossing plant Crepis - 1120 sancta (Asteraceae), Heredity, 85 (2000) 294-302. - 1121 [130] J. Sedlacek, B. Schmid, D. Matthies, M. Albrecht, Inbreeding Depression under Drought - 1122 Stress in the Rare Endemic Echium wildpretii (Boraginaceae) on Tenerife, Canary Islands, - 1123 PLOS ONE, 7 (2012) e47415. - 1124 [131] T.P. Hauser, V. Loeschcke, DROUGHT STRESS AND INBREEDING DEPRESSION IN - 1125 LYCHNIS FLOS-CUCULI (CARYOPHYLLACEAE), Evolution, 50 (1996) 1119-1126. - 1126 [132] J.D. Nason, N.C. Ellstrand, Lifetime estimates of biparental inbreeding depression in the - 1127 self-incompatible annual plant Raphanus sativus, Evolution, 49 (1995) 307-316. - 1128 [133] T.M. Sandner, D. Matthies, The effects of stress intensity and stress type on inbreeding - depression in Silene vulgaris, Evolution, 70 (2016) 1225-1238. - 1130 [134] S.A. Campbell, J.S. Thaler, A. Kessler, Plant chemistry underlies herbivore-mediated - inbreeding depression in nature, Ecology Letters, 16 (2013) 252-260. - 1132 [135] R.R. Kariyat, S.R. Scanlon, M.C. Mescher, C.M. De Moraes, A.G. Stephenson, Inbreeding - 1133 Depression in Solanum carolinense (Solanaceae) under Field Conditions and Implications for - 1134 Mating System Evolution, PLOS ONE, 6 (2011) e28459. - 1135 [136] C.T. Ivey, D.E. Carr, M.D. Eubanks, Effects of inbreeding in Mimulus guttatus on tolerance - to herbivory in natural environments, Ecology, 85 (2004) 567-574. - 1137 [137] D.E. Carr, M.D. Eubanks, Inbreeding alters resistance to insect herbivory and host plant - 1138 quality in Mimulus guttatus (Scrophulariaceae), Evolution, 56 (2002) 22-30. - 1139 [138] J. Núnez-Farfán, R.A. Cabrales-Vargas, R. Dirzo, Mating system consequences on - resistance to herb ivory and life history traits in Datura stramonium, American Journal of Botany, - 1141 83 (1996) 1041-1049. - 1142 [139] A.G. Stephenson, B. Leyshon, S.E. Travers, C.N. Hayes, J.A. Winsor, Interrelationships - among inbreeding, herbivory, and disease on reproduction in a wild gourd, Ecology, 85 (2004) - 1144 3023-3034. - 1145 [140] N.C. Hayes, J.A. Winsor, A.G. Stephenson, Environmental variation influences the - magnitude of inbreeding depression in Cucurbita pepo ssp. texana (Cucurbitaceae), Journal of - 1147 Evolutionary Biology, 18 (2005) 147-155. - 1148 [141] J.K. Norman, A.K. Sarai, S.G. Weller, T.E. Dawson, INBREEDING DEPRESSION IN - 1149 MORPHOLOGICAL AND PHYSIOLOGICAL TRAITS OF SCHIEDEA LYDGATEI - 1150 (CARYOPHYLLACEAE) IN TWO ENVIRONMENTS, Evolution, 49 (1995) 297-306. - 1151 [142] L. Klimes, J. Klimesova, R. Hendriks, J.M. Van Groenendael, Clonal plant architecture: a - comparative analysis of form and function, in: H. de Kroon, J.M. Van Groenendael (Eds.) The - 1153 Ecology and Evolution of Clonal Plants, Leiden, Leiden, Netherlands, 1997. - 1154 [143] S. Pierce, C.M. Stirling, R. Baxter, Pseudoviviparous reproduction of Poa alpina var. - vivipara L. (Poaceae) during long-term exposure to elevated atmospheric CO2, Annals of - 1156 botany, 91 (2003) 613-622. - 1157 [144] L.C. Bliss, Arctic and alpine plant life cycles, Annual Review of Ecology and Systematics, - 1158 2 (1971) 405-438. - 1159 [145] B.L. Steiner, G.F.J. Armbruster, J.F. Scheepens, J. Stocklin, Distribution of bulbil- and - seed-producing plants of Poa alpina (Poaceae) and their growth and reproduction in common - gardens suggest adaptation to different elevations, American Journal of Botany, 99 (2012) - 1162 2035-2044. - 1163 [146] A.R. Pluess, J. Stöcklin, The importance of population origin and environment on clonal - and sexual reproduction in the alpine plant Geum reptans. Functional Ecology, 19 (2005) 228- - 1165 237. - 1166 [147] X. Wang, W. Zhao, L. Li, J. You, B. Ni, X. Chen, Clonal plasticity and diversity facilitates - the adaptation of Rhododendron aureum Georgi to alpine environment, PLOS ONE, 13 (2018) - 1168 e0197089. - 1169 [148] E.A. Sinclair, J. Statton, R. Hovey, J.M. Anthony, K.W. Dixon, G.A. Kendrick, - 1170 Reproduction at the extremes: pseudovivipary, hybridization and genetic mosaicism in - 1171 Posidonia australis (Posidoniaceae), Annals of Botany, 117 (2015) 237-247. - 1172 [149] S.K. Emms, A.A. Hove, L.S. Dudley, S.J. Mazer, A.S. Verhoeven, Could seasonally - deteriorating environments favour the evolution of autogamous selfing and a drought escape - 1174 physiology through indirect selection? A test of the time limitation hypothesis using artificial - 1175 selection in Clarkia, Annals of botany, 121 (2018) 753-766. - 1176 [150] B. Walker, W. Steffen, An overview of the implications of global change for natural and - 1177 managed terrestrial ecosystems, Conservation Ecology, 1 (1997) 2. - 1178 [151] IPCC, Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming - 1179 of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in - the context of strengthening the global response to the threat of climate change, sustainable - development, and efforts to eradicate poverty [V. Masson-Delmotte, P. Zhai, H. O. Pörtner, D. - 1182 Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidock, S. Connors, - 1183 J. B. R. Mathews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, T. - 1184 Waterfield (eds.)]., In Press (2018). - 1185 [152] S.N. Sheth, A.L. Angert, Demographic compensation does not rescue populations at a - trailing range edge, Proceedings of the National Academy of Sciences, 115 (2018) 2413-2418. - 1187 [153] J.T. Anderson, Plant fitness in a rapidly changing world, New Phytologist, 210 (2016) 81-1188 87. - 1189 [154] J.T. Anderson, S.M. Wadgymar, Climate change disrupts local adaptation and favours - upslope migration, Ecology Letters, 23 (2020) 181-192. - 1191 [155] A.M. Wilczek, M.J. Cooper, T.M. Korves, J. Schmitt, Lagging adaptation to warming - 1192 climate in *Arabidopsis thaliana*, PNAS, 111 (2014) 7906-7913. - 1193 [156] M. Karageorgi, S.C. Groen, F. Sumbul, J.N. Pelaez, K.I. Verster, J.M. Aguilar, A.P. - Hastings, S.L. Bernstein, T. Matsunaga, M. Astourian, G. Guerra, F. Rico, S. Dobler, A.A. - 1195 Agrawal, N.K. Whiteman, Genome editing retraces the evolution of toxin resistance in the - 1196 monarch butterfly, Nature, 574 (2019) 409-412. - 1197 [157] A.S. Jump, J. Penuelas, Running to stand still: adaptation and the response of plants to - rapid climate change, Ecology Letters, 8 (2005) 1010-1020. - 1199 [158] S.J. Franks, A. Hoffmann, Genetics of climate change adaptation, Annual Review of - 1200 Genetics, 46 (2012) 185-208. - 1201 [159] T.J. Bartley, K.S. McCann, C. Bieg, K. Cazelles, M. Granados, M.M. Guzzo, A.S. - 1202 MacDougall, T.D. Tunney, B.C. McMeans, Food web rewiring in a changing world, Nature - 1203 Ecology & Evolution, 3 (2019) 345-354. - 1204 [160] S.A. Chamberlain, K.D. Whitney, J.A. Rudgers, Proximity to agriculture alters abundance - and community composition of wild sunflower mutualists and antagonists, Ecosphere, 4 (2013) art96. - 1207 [161] M.L. McKinney, J.L. Lockwood, Biotic homogenization: a few winners replacing many - losers in the next mass extinction, Trends Ecol Evol, 14 (1999) 450-453. - 1209 [162] D.P. Bebber, M.A.T. Ramotowski, S.J. Gurr, Crop pests and pathogens move polewards - in a warming world, Nature Climate Change, 3 (2013) 985-988. - 1211 [163] M.T. Burrows, D.S. Schoeman, L.B. Buckley, P. Moore, E.S. Poloczanska, K.M. Brander, - 1212 C. Brown, J.F. Bruno, C.M. Duarte, B.S. Halpern, J. Holding, C.V. Kappel, W. Kiessling, M.I. - 1213 O'Connor, J.M. Pandolfi, C. Parmesan, F.B. Schwing, W.J. Sydeman, A.J. Richardson, The - pace of shifting climate in marine and terrestrial ecosystems, Science, 334 (2011) 652-655. - 1215 [164] C. de Sassi, J.M. Tylianakis, Climate change disproportionately increases herbivore over - 1216 plant or parasitoid biomass, PLoS One, 7 (2012) e40557. - 1217 [165] D.W. Rosenberger, B.H. Aukema, R.C. Venette, Cold tolerance of mountain pine beetle - 1218 among novel eastern pines: A potential for trade-offs in an invaded range?, Forest Ecology and - 1219 Management, 400 (2017) 28-37. - 1220 [166] A.S. Weed, M.P. Ayers, J.A. Hicke, Consequences of climate change for biotic - disturbances in North American forests, Ecological Monographs, 83 (2013) 441-470. - 1222 [167] M.B. Rokaya, T. Dostálek, Z. Münzbergová, Plant-herbivore interactions along elevational - gradient: Comparison of field and common garden data, Acta Oecologica, 77 (2016) 168-175. - 1224 [168] S.J. Hart, T. Schoennagel, T.T. Veblen, T.B. Chapman, Area burned in the western United - 1225 States is unaffected by recent mountain pine beetle outbreaks, Proceedings of the National - 1226 Academy of Sciences, 112 (2015) 4375-4380. - 1227 [169] C. Robinet, A. Roques, Direct impacts of recent climate warming on insect populations, - 1228 Integrative Zoology, 5
(2010) 132-142. - 1229 [170] X. Lu, E. Siemann, X. Shao, H. Wei, J. Ding, Climate warming affects biological invasions - by shifting interactions of plants and herbivores, Glob Chang Biol, 19 (2013) 2339-2347. - 1231 [171] J.R.K. Forrest, Complex responses of insect phenology to climate change, Current - 1232 Opinion in Insect Science, 17 (2016) 49-54. - 1233 [172] I. Rangwala, J. Barsugli, K. Cozzetto, J. Neff, J. Prairie, Mid-21st century projections in - temperature extremes in the southern Colorado Rocky Mountains from regional climate models, - 1235 Climate Dynamics, 39 (2012) 1823-1840. - 1236 [173] J.C. Fyfe, C. Derksen, L. Mudryk, G.M. Flato, B.D. Santer, N.C. Swart, N.P. Molotch, X. - 1237 Zhang, H. Wan, V.K. Arora, Large near-term projected snowpack loss over the western United - 1238 States, Nature Communications, 8 (2017). - 1239 [174] J. Brodie, E. Post, F. Watson, J. Berger, Climate change intensification of herbivore - 1240 impacts on tree recruitment, Proc Biol Sci, 279 (2012) 1366-1370. - 1241 [175] B.B. Hansen, K. Isaksen, R.E. Benestad, J. Kohler, Å.Ø. Pedersen, L.E. Loe, S.J. - 1242 Coulson, J.O. Larsen, Ø. Varpe, Warmer and wetter winters: characteristics and implications of - an extreme weather event in the High Arctic, Environmental Research Letters, 9 (2014). - 1244 [176] E.H. DeLucia, P.D. Nabity, J.A. Zavala, M.R. Berenbaum, Climate change: resetting plant- - 1245 insect interactions, Plant Physiol, 160 (2012) 1677-1685. - 1246 [177] E.A. Robinson, G.D. Ryan, J.A. Newman, A meta-analytical review of the effects of - 1247 elevated CO2 on plant-arthropod interactions highlights the importance of interacting - 1248 environmental and biological variables, New Phytol, 194 (2012) 321-336. - 1249 [178] C. Gely, S.G.W. Laurance, N.E. Stork, How do herbivorous insects respond to drought - 1250 stress in trees?, Biol. Rev., 95 (2020) 434-448. - 1251 [179] M. Faroog, A. Wahid, N. Kobayashi, D. Fujita, S.M.A. Basra, Plant drought stress: effects, - mechanisms and management, Agronomy for Sustainable Development, 29 (2009) 185-212. - 1253 [180] J.A. Logan, W.W. Macfarlane, L. Willcox, Whitebark pine vulnerability to climate-driven - 1254 mountain pine beetle disturbance in the Greater Yellowstone Ecosystem, Ecological - 1255 Applications, 20 (2010) 895. - 1256 [181] K.A.I. Dworschak, A. Gruppe, R. Schopf, Survivability and post-diapause fitness in a - 1257 scolytid beetle as a function of overwintering developmental stage and the implications for - 1258 population dynamics, Ecol. Entomol., 39 (2014) 519-526. - 1259 [182] N. Erbilgin, Phytochemicals as mediators for host range expansion of a native invasive - 1260 forest insect herbivore, New Phytologist, 221 (2019) 1268-1278. - 1261 [183] N. Owen-Smith, G. Hopcraft, T. Morrison, S. Chamaillé-Jammes, R. Hetem, E. Bennitt, F. - Van Langevelde, Movement ecology of large herbivores in African savannas: current knowledge - 1263 and gaps, Mammal Review, 50 (2020) 252-266. - 1264 [184] I. Bartomeus, J.R. Stavert, D. Ward, O. Aguado, Historical collections as a tool for - 1265 assessing the global pollination crisis, Philos Trans R Soc Lond B Biol Sci, 374 (2018). - 1266 [185] A. Pauw, J.A. Hawkins, Reconstruction of historical pollination rates reveals linked - declines of pollinators and plants, Oikos, 120 (2011) 344-349. - 1268 [186] J. Memmott, P.G. Craze, N.M. Waser, M.V. Price, Global warming and the disruption of - 1269 plant-pollinator interactions, Ecol. Lett., 10 (2007) 710-717. - 1270 [187] J.E. Ogilvie, S.R. Griffin, Z.J. Gezon, B.D. Inouye, N. Underwood, D.W. Inouye, R.E. Irwin, - 1271 Interannual bumble bee abundance is driven by indirect climate effects on floral resource - 1272 phenology, Ecol Lett, 20 (2017) 1507-1515. - 1273 [188] M.P. Arbetman, G. Gleiser, C.L. Morales, P. Williams, M.A. Aizen, Global decline of - 1274 bumblebees is phylogenetically structured and inversely related to species range size and - pathogen incidence, Proceedings of the Royal Society B: Biological Sciences, 284 (2017) 1275 - 1276 20170204. - 1277 [189] S.R. Colla, F. Gadallah, L. Richardson, D. Wagner, L. Gall, Assessing declines of North - 1278 American bumble bees (Bombus spp.) using museum specimens, Biodiversity and - 1279 Conservation, 21 (2012) 3585-3595. - 1280 [190] S.S. Nooten, S.M. Rehan, Historical changes in bumble bee body size and range shift of - declining species, Biodiversity and Conservation, 29 (2020) 451-467. 1281 - 1282 [191] R.D. Sargent, D.D. Ackerly, Plant-pollinator interactions and the assembly of plant - 1283 communities, Trends in Ecology & Evolution, 23 (2008) 123-130. - 1284 [192] J. Ollerton, R. Winfree, S. Tarrant, How many flowering plants are pollinated by animals?, - 1285 Oikos, 120 (2011) 321-326. - 1286 [193] C.A. Deutsch, J.J. Tewksbury, R.B. Huey, K.S. Sheldon, C.K. Ghalambor, D.C. Haak, P.R. - 1287 Martin, Impacts of climate warming on terrestrial ectotherms across latitude, Proceedings of the - 1288 National Academy of Sciences, 105 (2008) 6668-6672. - 1289 [194] J. Ollerton, S.D. Johnson, A.B. Hingston, Geographical variation in diversity and specificity - 1290 of pollination systems, in: N.M. Waser, J. Ollerton (Eds.) Plant-pollinator interactions: from - 1291 specialization to generalization, University of Chicago Press, 2006, pp. 283-308. - 1292 [195] L.P. Crowther, D.J. Wright, D.S. Richardson, C. Carvell, A.F.G. Bourke, Spatial ecology of - 1293 a range-expanding bumble bee pollinator, Ecology and Evolution, 9 (2019) 986-997. - 1294 [196] F.E. Bedford, R.J. Whittaker, J.T. Kerr, Systemic range shift lags among a pollinator - 1295 species assemblage following rapid climate change1This article is part of a Special Issue - 1296 entitled "Pollination biology research in Canada: Perspectives on a mutualism at different - 1297 scales", Botany, 90 (2012) 587-597. - [197] J.K. Hill, C.D. Thomas, R. Fox, M.G. Telfer, S.G. Willis, J. Asher, B. Huntley, Responses 1298 - 1299 of butterflies to twentieth century climate warming: implications for future ranges, Proc Biol Sci, - 1300 269 (2002) 2163-2171. - 1301 [198] L.E. Coristine, P. Soroye, R.N. Soares, C. Robillard, J.T. Kerr, Dispersal limitation, climate - change, and practical tools for butterfly conservation in intensively used landscapes, Natural 1302 - 1303 Areas Journal, 36 (2016) 440-452. - 1304 [199] A. Fernandez-Chacon, C. Stefanescu, M. Genovart, J.D. Nichols, J.E. Hines, F. Paramo, - 1305 M. Turco, D. Oro, Determinants of extinction-colonization dynamics in Mediterranean butterflies: - 1306 the role of landscape, climate and local habitat features, J Anim Ecol, 83 (2014) 276-285. - 1307 [200] S.K. Richman, J.M. Levine, L. Stefan, C.A. Johnson, Asynchronous range shifts drive - 1308 alpine plant-pollinator interactions and reduce plant fitness, Glob Chang Biol, 26 (2020) 3052- - 1309 3064. - 1310 [201] J.R.K. Forrest, J.D. Thomson, An examination of synchrony between insect emergence - 1311 and flowering in Rocky Mountain meadows, Ecological Monographs, 81 (2011) 469-491. - 1312 [202] S.J. Hegland, A. Nielsen, A. Lazaro, A.L. Bjerknes, O. Totland, How does climate warming - 1313 affect plant-pollinator interactions?, Ecol Lett, 12 (2009) 184-195. - [203] A.M. McKinney, P.J. CaraDonna, D.W. Inouye, B. Barr, B.C. David, N.M. Waser, 1314 - 1315 Asynchronous changes in phenology of migrating Broad-tailed Hummingbirds and their early- - 1316 season nectar resources, Ecology, 93 (2012) 1987-1999. - 1317 [204] N.E. Rafferty, A.R. Ives, Effects of experimental shifts in flowering phenology on plant- - 1318 pollinator interactions, Ecol. Lett., 14 (2011) 69-74. - 1319 [205] D.R. Campbell, J.M. Powers, Natural selection on floral morphology can be influenced by - 1320 climate, Proceedings of the Royal Society B: Biological Sciences, 282 (2015) 20150178. - 1321 [206] N.E. Miller-Struttmann, J.C. Geib, J.D. Franklin, P.G. Kevan, R.M. Holdo, E.-M. Diane, - 1322 A.M. Lynn, J.A. Kettenbach, E. Hedrick, C. Galen, Functional mismatch in a bumble bee - 1323 pollination mutualism under climate change, Science, 349 (2015) 1541-1544. - 1324 [207] O. Schweiger, J.C. Biesmeijer, R. Bommarco, T. Hickler, P.E. Hulme, S. Klotz, I. Kühn, M. - Moora, A. Nielsen, R. Ohlemüller, T. Petanidou, S.G. Potts, P. Pyšek, J.C. Stout, M.T. Sykes, T. - 1326 Tscheulin, M. Vilà, G.-R. Walther, C. Westphal, M. Winter, M. Zobel, J. Settele, Multiple - 1327 stressors on biotic interactions: how climate change and alien species interact to affect - 1328 pollination, Biol. Rev., 85 (2010) 777-795. - 1329 [208] B.B. Phillips, R.F. Shaw, M.J. Holland, E.L. Fry, R.D. Bardgett, J.M. Bullock, J.L. Osborne, - 1330 Drought reduces floral resources for pollinators, Glob Chang Biol, 24 (2018) 3226-3235. - 1331 [209] S.E. Hoover, J.J. Ladley, A.A. Shchepetkina, M. Tisch, S.P. Gieseg, J.M. Tylianakis, - Warming, CO2, and nitrogen deposition interactively affect a plant-pollinator mutualism, Ecol - 1333 Lett, 15 (2012) 227-234. - 1334 [210] H.P. Hendriksma, K.L. Oxman, S. Shafir, Amino acid and carbohydrate tradeoffs by honey - bee nectar foragers and their implications for plant-pollinator interactions, J Insect Physiol, 69 - 1336 (2014) 56-64. - 1337 [211] C. Galen, High and Dry: Drought Stress, Sex-Allocation Trade-offs, and Selection on - 1338 Flower Size in the Alpine Wildflower *Polemonium viscosum* (Polemoniaceae), The American - 1339 Naturalist, 156 (2000) 72-83. - 1340 [212] Y. Sapir, A. Shmida, O. Fragman, H.P. Comes, Morphological variation of the Oncocyclus - irises (Iris: Iridaceae) in the southern Levant, Botanical Journal of the Linnean Society, 139 - 1342 (2002) 369-382. - 1343 [213] A.E. Douglas, J.H. Werren, Holes in the Hologenome: Why Host-Microbe Symbioses Are - 1344 Not Holobionts, mBio, 7 (2016) e02099-02015. - 1345 [214] J.A. Lau, J.T. Lennon, Rapid responses of soil microorganisms improve plant fitness in - 1346 novel environments, PNAS, (2012) 14058-14062. - 1347 [215] B. Stone, J. Howard,
Low-order aberration coefficients of systems with freeform surfaces, - 1348 Optical Engineering, 57 (2018) 101702. - 1349 [216] P.R. Hardoim, L.S. van Overbeek, G. Berg, A.M. Pirttilä, S. Compant, A. Campisano, M. - 1350 Döring, A. Sessitsch, The Hidden World within Plants: Ecological and Evolutionary - 1351 Considerations for Defining Functioning of Microbial Endophytes, Microbiol Mol Biol Rev, 79 - 1352 (2015) 293-320. - 1353 [217] M.A. Hassani, P. Durán, S. Hacquard, Microbial interactions within the plant holobiont, - 1354 Microbiome, 6 (2018) 1-17. - 1355 [218] A. Fraile, F. Garcia-Arenal, The Coevolution of Plants and Viruses: Resistance and - 1356 Pathogenicity, Advances in virus research, 76 (2010). - 1357 [219] M.J. Roossinck, Plants, Viruses and the Environment: Ecology and Mutualism, Virology, - 1358 479-480 (2015) 271-277. - 1359 [220] S.R. Bordenstein, K.R. Theis, Host Biology in Light of the Microbiome: Ten Principles of - Holobionts and Hologenomes, PLOS Biology, 13 (2015) e1002226. - 1361 [221] M.P. Parker, Plant Fitness Variation Caused by Different Mutualist Genotypes, Ecology, - 1362 76 (1995) 1525-1535. - 1363 [222] T.J. Kawecki, D. Ebert, Conceptual issues in local adaptation, Ecology Letters, 7 (2004) - 1364 1225-1241. - 1365 [223] P. Vandenkoornhuyse, A. Quaiser, M. Duhamel, A. Le Van, A. Dufresne, The importance - 1366 of the microbiome of the plant holobiont, New Phytologist, 206 (2015) 1196-1206. - 1367 [224] R. Cavicchioli, W.J. Ripple, K.N. Timmis, F. Azam, L.R. Bakken, M. Baylis, M.J. - 1368 Behrenfeld, A. Boetius, P.W. Boyd, A.T. Classen, T.W. Crowther, R. Danovaro, C.M. Foreman, - 1369 J. Huisman, D.A. Hutchins, J.K. Jansson, D.M. Karl, B. Koskella, D.B. Mark Welch, J.B.H. - 1370 Martiny, M.A. Moran, V.J. Orphan, D.S. Reay, J.V. Remais, V.I. Rich, B.K. Singh, L.Y. Stein, - 1371 F.J. Stewart, M.B. Sullivan, M.J.H. van Oppen, S.C. Weaver, E.A. Webb, N.S. Webster, - 1372 Scientists' warning to humanity: microorganisms and climate change, Nature Reviews - 1373 Microbiology, 17 (2019) 569-586. - 1374 [225] M.A. Hassani, E. Özkurt, H. Seybold, T. Dagan, E.H. Stukenbrock, Interactions and - 1375 Coadaptation in Plant Metaorganisms, Annu. Rev. Phytopathol., 57 (2019) 483-503. - 1376 [226] Y. Soen, Environmental disruption of host-microbe co-adaptation as a potential driving - 1377 force in evolution, Front Genet, 5 (2014) 168. - 1378 [227] M.R. Wagner, D.S. Lundberg, D. Coleman-Derr, S.G. Tringe, J.L. Dangl, T. Mitchell-Olds, - Natural soil microbes alter flowering phenology and the intensity of selection on flowering time in - 1380 a wild Arabidopsis relative, Ecol Lett, 17 (2014) 717-726. - 1381 [228] M.A. Bradford, T.H. Johns, R.D. Bardgett, H.I.J. Black, B. Boag, M. Bonowski, R. Cook, T. - 1382 Eggers, A.C. Gange, S.J. Grayston, E. Kandeler, A.E. McCaig, J.E. Newington, J.I. Prosser, H. - 1383 Setälä, P.L. Staddon, G.M. Tordoff, D. Tscherko, J.H. Lawton, Impacts of soil faunal community - 1384 composition on model grassland ecosystems, Science, 298 (2002) 615-618. - 1385 [229] P. García-Palacios, F.T. Maestre, J. Kattge, D.H. Wall, Climate and litter quality differently - modulate the effects of soil fauna on litter decomposition across biomes, Ecology letters, 16 - 1387 (2013) 1045-1053. - 1388 [230] C.S. Sheik, W.H. Beasley, M.S. Elshahed, X. Zhou, Y. Luo, L.R. Krumholz, Effect of - warming and drought on grassland microbial communities, ISME J, 5 (2011) 1692-1700. - 1390 [231] S.E. Evans, M.D. Wallenstein, Climate change alters ecological strategies of soil bacteria, - 1391 Ecology letters, 17 (2014) 155-164. - 1392 [232] V. Suseela, R.T. Conant, M.D. Wallenstein, J.S. Dukes, Effects of soil moisture on the - 1393 temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate - change experiment, Global Change Biology, 18 (2012) 336-348. - 1395 [233] R.D. Bardgett, P. Manning, E. Morriën, F.T. De Vries, Hierarchical responses of plant–soil - interactions to climate change: consequences for the global carbon cycle, Journal of Ecology, - 1397 101 (2013) 334-343. - 1398 [234] M.A. Dawes, P. Schleppi, S. Hättenschwiler, C. Rixen, F. Hagedorn, Soil warming opens - the nitrogen cycle at the alpine treeline, Global Change Biology, 23 (2017) 421-434. - 1400 [235] M.R. Shaw, J. Harte, Response of nitrogen cycling to simulated climate change: - differential responses along a subalpine ecotone, Global Change Biology, 7 (2001) 193-210. - 1402 [236] H.A.L. Henry, Climate change and soil freezing dynamics: historical trends and projected - 1403 changes, Climatic Change, 87 (2008) 421-434. - 1404 [237] K. Gavazov, J. Ingrisch, R. Hasibeder, R.T. Mills, A. Buttler, G. Gleixner, J. Pumpanen, M. - Bahn, Winter ecology of a subalpine grassland: Effects of snow removal on soil respiration, - microbial structure and function, Science of the Total Environment, 590 (2017) 316-324. - 1407 [238] P.M. Groffman, J.P. Hardy, S. Fashu-Kanu, C.T. Driscoll, N.L. Cleavitt, T.J. Fahey, M.C. - 1408 Fisk, Snow depth, soil freezing and nitrogen cycling in a northern hardwood forest landscape, - 1409 Biogeochemistry, 102 (2011) 223-238. - 1410 [239] D. Gao, L. Zhang, J. Liu, B. Peng, Z. Fan, W. Dai, P. Jiang, E. Bai, Responses of - 1411 terrestrial nitrogen pools and dynamics to different patterns of freeze-thaw cycle: A meta- - 1412 analysis, Glob Chang Biol, 0 (2017). - 1413 [240] M. Bush, J. Flenley, W. Gosling, Tropical rainforest responses to climatic change, Springer - 1414 Science & Business Media, 2011. - 1415 [241] R. Tito, H.L. Vasconcelos, K.J. Feeley, Mountain ecosystems as natural laboratories for - 1416 climate change experiments, Frontiers in Forests and Global Change, 3 (2020) 38. - 1417 [242] W.L. Silver, The potential effects of elevated CO 2 and climate change on tropical forest - 1418 soils and biogeochemical cycling, in: Potential Impacts of Climate Change on Tropical Forest - 1419 Ecosystems, Springer, 1998, pp. 197-221. - 1420 [243] V. Krashevska, D. Sandmann, M. Maraun, S. Scheu, Moderate changes in nutrient input - alter tropical microbial and protist communities and belowground linkages, The ISME journal, 8 - 1422 (2014) 1126-1134. - 1423 [244] L.G. Barrett, J.M. Kniskern, N. Bodenhausen, W. Zhang, J. Bergelson, Continua of - specificity and virulence in plant host–pathogen interactions: causes and consequences, New - 1425 Phytologist, 183 (2009) 513-529. - 1426 [245] B. Huot, C.D.M. Castroverde, A.C. Velásquez, E. Hubbard, J.A. Pulman, J. Yao, K.L. - 1427 Childs, K. Tsuda, B.L. Montgomery, S.Y. He, Dual impact of elevated temperature on plant - defence and bacterial virulence in Arabidopsis, Nature Communications, 8 (2017) 1808. - 1429 [246] V. Sangwan, B.L. Örvar, J. Beyerly, H. Hirt, R.S. Dhindsa, Opposite changes in membrane - 1430 fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways, The Plant - 1431 Journal, 31 (2002) 629-638. - 1432 [247] S. Kotak, J. Larkindale, U. Lee, P. von Koskull-Doring, E. Vierling, K.D. Scharf, Complexity - of the heat stress response in plants, Current Opinion in Plant Biology, 10 (2007) 310-316. - 1434 [248] F. Bringel, I. Couée, Pivotal roles of phyllosphere microorganisms at the interface between - plant functioning and atmospheric trace gas dynamics, Front Microbiol, 6 (2015) 486. - 1436 [249] M. van der Voort, M. Kempenaar, M. van Driel, J.M. Raaijmakers, R. Mendes, Impact of - soil heat on reassembly of bacterial communities in the rhizosphere microbiome and plant - 1438 disease suppression, Ecol Lett, 19 (2016) 375-382. - 1439 [250] J. Wang, F. Tao, W. Tian, Z. Guo, X. Chen, X. Xu, H. Shang, X. Hu, The wheat WRKY - 1440 transcription factors TaWRKY49 and TaWRKY62 confer differential high-temperature seedling- - plant resistance to Puccinia striiformis f. sp. tritici, PLOS ONE, 12 (2017) e0181963. - 1442 [251] L.M. Márquez, R.S. Redman, R.J. Rodriguez, M.J. Roossinck, A Virus in a Fungus in a - 1443 Plant: Three-Way Symbiosis Required for Thermal Tolerance, Science, 315 (2007) 513-515. - 1444 [252] R. Margesin, G. Neuner, K.B. Storey, Cold-loving Microbes, Plants, and Animals- - 1445 Fundamental and Applied Aspects, Naturwissenschaften, 94 (2007) 77-99. - 1446 [253] C. Körner, Plant adaptation to cold climates, F1000Res, 5 (2016) F1000 Faculty Rev- - 1447 2769. - 1448 [254] A. Bertrand, Y. Castonguay, Plant adaptations to overwintering stresses and implications - of climate change, Canadian Journal of Botany, 81 (2003) 1145-1152. - 1450 [255] D. Naylor, D. Coleman-Derr, Drought Stress and Root-Associated Bacterial Communities, - 1451 Frontiers in Plant Science, 8 (2018). - 1452 [256] C. Ziv, Z. Zhao, Y.G. Gao, Y. Xia, Multifunctional Roles of Plant Cuticle During Plant- - 1453 Pathogen Interactions, Front Plant Sci. 9 (2018) 1088. - 1454 [257] J.E. Carlson, C.A. Adams, K.E. Holsinger, Intraspecific variation in stomatal traits, leaf - traits and physiology reflects adaptation along aridity gradients in a South African shrub, Annals - 1456 of Botany, 117 (2016) 195-207. - 1457 [258] M. Melotto, W. Underwood, J. Koczan, K. Nomura, S.Y. He, Plant Stomata Function in - 1458 Innate Immunity against Bacterial Invasion, Cell, 126 (2006) 969-980. - 1459 [259] D. Naylor, S. DeGraaf, E. Purdom, D. Coleman-Derr, Drought and host selection influence - bacterial community dynamics in the grass root microbiome, The ISME Journal, 11 (2017) 2691- - 1461 2704. - 1462 [260] R. Sinha, V. Irulappan, B. Mohan-Raju, A. Suganthi, M. Senthil-Kumar, Impact of drought - stress on simultaneously occurring pathogen infection in field-grown chickpea, Scientific - 1464 Reports, 9 (2019) 5577. - 1465 [261] L.P. Singh, S.S. Gill, N. Tuteja, Unraveling the role of fungal symbionts in plant abiotic - 1466 stress tolerance, Plant Signal Behav, 6 (2011) 175-191. - 1467 [262] F.M. Hamelin, F.M. Hilker, T.A. Sun, M.J. Jeger, M.R. Hajimorad, L.J.S. Allen, H.R. - 1468 Prendeville, The evolution of parasitic and mutualistic
plant-virus symbioses through - transmission-virulence trade-offs, Virus Res, 241 (2017) 77-87. - 1470 [263] P. Xu, F. Chen, J.P. Mannas, T. Feldman, L.W. Sumner, M.J. Roossinck, Virus infection - improves drought tolerance, New Phytol, 180 (2008) 911-921. - 1472 [264] K.M.G. Dastogeer, H. Li, K. Sivasithamparam, M. Jones, S. Wylie, Fungal endophytes and - 1473 a virus confer drought tolerance to Nicotiana benthamiana plants through modulating osmolytes, - 1474 antioxidant enzymes and expression of host drought responsive genes, Environmental and - 1475 Experimental Botany, 149 (2018). - 1476 [265] A. Bouasria, T. Mustafa, F. De Bello, L. Zinger, G. Lemperiere, R.A. Geremia, P. Choler, - 1477 Changes in root-associated microbial communities are determined by species-specific plant - 1478 growth responses to stress and disturbance, European Journal of Soil Biology, 52 (2012) 59-66. - 1479 [266] K.K. Treseder, A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and - atmospheric CO2 in field studies, The New phytologist, 164 (2004) 347-355. - 1481 [267] A.E. Bennett, A.T. Classen, Climate change influences mycorrhizal fungal–plant - interactions, but conclusions are limited by geographical study bias, Ecology, 101 (2020) - 1483 e02978. - 1484 [268] M. Grover, M. Maheswari, S. Desai, K.A. Gopinath, B. Venkateswarlu, Elevated CO2: - 1485 Plant associated microorganisms and carbon sequestration, Appl. Soil Ecol., 95 (2015) 73-85. - 1486 [269] C. Terrer, S. Vicca, B. Hungate, B.B. Phillips, H.C. Prentice, Mycorrhizal association as a - primary control of the CO2 fertilization effect, Science, 353 (2016) 72-74. - 1488 [270] P. Trębicki, N. Nancarrow, N.A. Bosque-Pérez, B. Rodoni, M. Aftab, A. Freeman, A. Yen, - 1489 G.J. Fitzgerald, Virus incidence in wheat increases under elevated CO(2): A 4-year study of - yellow dwarf viruses from a free air carbon dioxide facility, Virus Res, 241 (2017) 137-144. - 1491 [271] A.T. Classen, M.K. Sundqvist, J.A. Henning, G.S. Newman, J.A.M. Moore, M.A. Cregger, - 1492 L.C. Moorhead, C.M. Patterson, Direct and indirect effects of climate change on soil microbial - and soil microbial-plant interactions: What lies ahead?, Ecosphere, 6 (2015) art130. - 1494 [272] W.H. Van der Putten, Climate Change, Aboveground-Belowground Interactions, and - Species' Range Shifts, Annual Review of Ecology, Evolution, and Systematics, 43 (2012) 365-1496 383. - 1497 [273] K.J.F. Verhoeven, A. Biere, J.A. Harvey, W.H. van der Putten, Plant invaders and their - novel natural enemies: who is naïve?, Ecology letters, 12 (2009) 107-117. - 1499 [274] C.E. Mitchell, A.G. Power, Release of invasive plants from fungal and viral pathogens, - 1500 Nature, 421 (2003) 625-627. - 1501 [275] A.C. Velásquez, C.D.M. Castroverde, S.Y. He, Plant and pathogen warfare under - changing climate conditions, Current Biology, 28 (2018) 619-634. - 1503 [276] C.P. Terhorst, J.T. Lennon, J.A. Lau, The relative importance of rapid evolution for plant- - 1504 microbe interactions depends on ecological context, Proc Biol Sci. 281 (2014) 20140028. - 1505 [277] P.K. Anderson, A.A. Cunningham, N.G. Patel, F.J. Morales, P.R. Epstein, P. Daszak, - Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers, Trends Ecol Evol, 19 (2004) 535-544. - 1508 [278] P. Lefeuvre, D.P. Martin, S.F. Elena, D.N. Shepherd, P. Roumagnac, A. Varsani, - 1509 Evolution and ecology of plant viruses, Nature Reviews Microbiology, 17 (2019) 632-644. - 1510 [279] D. Croll, B.A. McDonald, The genetic basis of local adaptation for pathogenic fungi in - 1511 agricultural ecosystems, Mol Ecol, 26 (2017) 2027-2040. - 1512 [280] A.G. Power, C.E. Mitchell, Pathogen spillover in disease epidemics, The American - 1513 naturalist, 164 Suppl 5 (2004) S79-89. - 1514 [281] E.A. Mueller, N.I. Wisnoski, A.L. Peralta, J.T. Lennon, Microbial rescue effects: How - 1515 microbiomes can save hosts from extinction, Functional Ecology, n/a (2020). - 1516 [282] M.L. Friesen, S.S. Porter, S.C. Stark, E.J.v. Wettberg, J.L. Sachs, E. Martinez-Romero, - 1517 Microbially Mediated Plant Functional Traits, Annual Review of Ecology, Evolution, and - 1518 Systematics, 42 (2011) 23-46. - 1519 [283] K. Aung, Y. Jiang, S.Y. He, The role of water in plant-microbe interactions, Plant J, 93 - 1520 (2018) 771-780. - 1521 [284] R.J. Rodriguez, J.F. White Jr, A.E. Arnold, R.S. Redman, Fungal endophytes: diversity - 1522 and functional roles, New Phytologist, 182 (2009) 314-330. - 1523 [285] I.C. Chen, J.K. Hill, R. Ohlemüller, D.B. Roy, C.D. Thomas, Rapid range shifts of species - associated with high levels of climate warming, Science, 333 (2011) 1024-1026. - 1525 [286] M.B. Davis, R.G. Shaw, Range shifts and adaptive responses to Quaternary climate - 1526 change, Science, 292 (2001) 673-679. - 1527 [287] S.E. Sultan, Phenotypic plasticity and plant adaptation, Acta Botanica Neerlandica, 44 - 1528 (1995) 363-383. - 1529 [288] J. Merila, A.P. Hendry, Climate change, adaptation, and phenotypic plasticity: the problem - and the evidence, Evolutionary Applications, 7 (2014) 1-14. - 1531 [289] A.A. Hoffmann, C.M. Sgro, Climate Change and evolutionary adaptation, Nature 470 - 1532 (2011). - 1533 [290] P. Gienapp, C. Teplitsky, J.S. Alho, J.A. Mills, J. Merila, Climate change and evolution: - disentangling environmental and genetic responses, Molecular Ecology, 17 (2008) 167-178. - 1535 [291] J.M.G. Bloor, P. Pichon, R. Falcimagne, P. Leadley, J.-F. Soussana, Effects of warming, - 1536 summer drought, and CO2 enrichment on aboveground biomass production, flowering - 1537 phenology, and community structure in an upland grassland ecosystem, Ecosystems, 13 (2010) - 1538 888-900. - 1539 [292] J.T. Anderson, A.M. Panetta, T. Mitchell-Olds, Evolutionary and Ecological Responses to - 1540 Anthropogenic Climate Change, Plant Physiology, 160 (2012) 1728-1740. - 1541 [293] S.M. Wadgymar, J.E. Ogilvie, D.W. Inouye, A.E. Weis, J.T. Anderson, Phenological - responses to multiple environmental drivers under climate change: insights from a long-term - observational study and a manipulative field experiment, New Phytol, 218 (2018) 517-529. - 1544 [294] S. Matesanz, A. Escudero, F. Valladares, Impact of three global change drivers on a - 1545 Mediterranean shrub, Ecology, 90 (2009) 2609-2621. - 1546 [295] J. Anderson, Z. Gezon, Plasticity in functional traits in the context of climate change: A - 1547 case study of the subalpine forb *Boechera stricta* (Brassicaceae), Global Change Biology, 21 - 1548 (2015) 1689-1703. - 1549 [296] A.D. Leakey, J.A. Lau, Evolutionary context for understanding and manipulating plant - responses to past, present and future atmospheric [CO2], Philos Trans R Soc Lond B Biol Sci, - 1551 367 (2012) 613-629. - 1552 [297] J.A. Dunne, J. Harte, K.J. Taylor, Subalpine meadow flowering phenology responses to - climate change: Integrating experimental and gradient methods, Ecological Monographs, 73 - 1554 (2003) 69-86. - 1555 [298] G.R. Walther, E. Post, P. Convey, A. Menzel, C. Parmesan, T.J.C. Beebee, J.M. - 1556 Fromentin, O. Hoegh-Guldberg, F. Bairlein, Ecological responses to recent climate change, - 1557 Nature, 416 (2002) 389-395. - 1558 [299] D.L. Swain, B. Langenbrunner, J.D. Neelin, A. Hall, Increasing precipitation volatility in - twenty-first-century California, Nature Climate Change, 8 (2018) 427-433. - 1560 [300] K. Jentsch, J. Kreyling, C. Beierkuhnlein, A new generation of climate change - experiments: Events not trends, Frontiers in Ecology and the Environment, 5 (2007) 365-374. - 1562 [301] A.A. Sher, D.E. Goldberg, A. Novoplansky, The effect of mean and variance in resource - supply on survival of annuals from Mediterranean and desert environments, Oecologia, 141 - 1564 (2004) 353-362. - 1565 [302] A.K. Knapp, C. Beier, D.D. Briske, A.T. Classen, Y. Luo, M. Reichstein, M.D. Smith, S.D. - 1566 Smith, J.E. Bell, P.A. Fay, J.L. Heisler, S.W. Leavitt, R. Sherry, B. Smith, E. Weng, - 1567 Consequences of More Extreme Precipitation Regimes for Terrestrial Ecosystems, Bioscience, - 1568 58 (2008) 811-821. - 1569 [303] P.A. Fay, J.D. Carlisle, A.K. Knapp, J.M. Blair, S.L. Collins, Productivity responses to - 1570 altered rainfall patterns in a C4-dominated grassland, Oecologia, 137 (2003) 245-251. - 1571 [304] A.K. Knapp, P.A. Fay, J.M. Blair, S.L. Collins, M.D. Smith, J.D. Carlisle, C.W. Harper, B.T. - Danner, M.S. Lett, J.K. McCarron, Rainfall Variability, Carbon Cycling, and Plant Species - 1573 Diversity in a Mesic Grassland, Science, 298 (2002) 2202-2205. - 1574 [305] J. Kreyling, M. Wenigmann, C. Beierkuhnlein, A. Jentsch, Effects of extreme weather - events on plant productivity and tissue die-back are modified by community composition, - 1576 Ecosystems, 11 (2008) 752-763. - 1577 [306] S. Backhaus, J. Kreyling, K. Grant, C. Beierkuhnlein, J. Walter, A. Jentsch, Recurrent mild - drought events increase resistance toward extreme drought stress, Ecosystems, 17 (2014) - 1579 1068-1081. - 1580 [307] A. Jentsch, J. Kreyling, J. Boettcher-Treschkow, C. Beierkuhnlein, Beyond gradual - 1581 warming: extreme weather events alter flower phenology of European grassland and heath - 1582 species, Global Change Biology, 15 (2009) 837-849. - 1583 [308] J.F. Scheepens, Y. Deng, O. Bossdorf, Phenotypic plasticity in response to temperature - 1584 fluctuations is genetically variable, and relates to climatic variability of origin, in Arabidopsis - 1585 thaliana, AoB PLANTS, 10 (2018). - 1586 [309] E. Gianoli, M. Gonzalez-Teuber, Environmental heterogeneity and population - differentiation in plasticity to drought in Convolvulus chilensis (Convolvulaceae), Evolutionary - 1588 Ecology, 19 (2005) 603-613. - 1589 [310] J.D. Pratt, K.A. Mooney, Clinal adaptation and adaptive plasticity in Artemisia californica: - implications for the response of a foundation species to predicted climate change, Global - 1591 Change Biology, 19 (2013) 2454-2466. - 1592
[311] M.E. Visser, Keeping up with a warming world; assessing the rate of adaptation to climate - change, Proceedings of the Royal Society B-Biological Sciences, 275 (2008) 649-659. - 1594 [312] T. Jezkova, J.J. Wiens, Rates of change in climatic niches in plant and animal populations - are much slower than projected climate change, Proceedings of the Royal Society B: Biological Sciences, 283 (2016) 20162104. - 1597 [313] S.J. Franks, E. Hamann, A.E. Weis, Using the resurrection approach to understand - 1598 contemporary evolution in changing environments, Evolutionary Applications, 11 (2018) 17-28. - 1599 [314] S.J. Franks, J.C. Avise, W.E. Bradshaw, J.K. Conner, J.R. Etterson, S.J. Mazer, R.G. - Shaw, A.E. Weis, The resurrection initiative: storing ancestral genotypes to capture evolution in action, Bioscience, 58 (2008) 870-873. - 1602 [315] R.E. Lenski, What is adaptation by natural selection? Perspectives of an experimental - 1603 microbiologist, PLOS Genetics, 13 (2017) e1006668. - 1604 [316] S.J. Franks, S. Sim, A.E. Weis, Rapid evolution of flowering time by an annual plant in - 1605 response to a climate fluctuation, PNAS, 104 (2007) 1278-1282. - 1606 [317] S.C. Lambrecht, A.K. Gujral, L.J. Renshaw, L.T. Rosengreen, Evolutionary and plastic - 1607 changes in a native annual plant after a historic drought, Ecology and Evolution, n/a (2020). - 1608 [318] E.E. Dickman, L.K. Pennington, S.J. Franks, J.P. Sexton, Evidence for adaptive - responses to historic drought across a native plant species range, Evolutionary Applications, 12 - 1610 (2019) 1569-1582. - 1611 [319] E. Nevo, Y.-B. Fu, T. Pavlicek, S. Khalifa, M. Tavasi, A. Beiles, Evolution of wild cereals - 1612 during 28 years of global warming in Israel, PNAS, 109 (2012) 3412-3415. - 1613 [320] R. Gómez, B. Méndez-Vigo, A. Marcer, C. Alonso-Blanco, F.X. Picó, Quantifying temporal - 1614 change in plant population attributes: insights from a resurrection approach, AoB PLANTS, 10 (2018). - 1616 [321] S.E. Sultan, T. Horgan-Kobelski, L.M. Nichols, C.E. Riggs, R.K. Waples, A resurrection - 1617 study reveals rapid adaptive evolution within populations of an invasive plant, Evolutionary - 1618 Applications, 6 (2013) 266-278. - 1619 [322] A. Kuester, A. Wilson, S.-M. Chang, R.S. Baucom, A resurrection experiment finds - evidence of both reduced genetic diversity and potential adaptive evolution in the agricultural - weed Ipomoea purpurea, Molecular Ecology, 25 (2016) 4508-4520. - 1622 [323] A.E. Weis, Detecting the "invisible fraction" bias in resurrection experiments, Evolutionary - 1623 Applications, 11 (2018) 88-95. - 1624 [324] J.R. Etterson, S.J. Franks, S.J. Mazer, R.G. Shaw, N.L.S. Gorden, H.E. Schneider, J.J. - Weber, K.J. Winkler, A.E. Weis, Project Baseline: An unprecedented resource to study plant - evolution across space and time, American Journal of Botany, 103 (2016) 164-173. - 1627 [325] R. Rauschkolb, L. Henres, A. Ensslin, J.F. Scheepens, Back to the Future Using seed - banks to investigate shifts in drought resistance in four Mediterranean herbs, 2019. - 1629 [326] C. Schlötterer, R. Kofler, E. Versace, R. Tobler, S.U. Franssen, Combining experimental - 1630 evolution with next-generation sequencing: a powerful tool to study adaptation from standing - 1631 genetic variation, Heredity, 114 (2015) 431-440. - 1632 [327] S.J. Franks, N.C. Kane, N.B. O'Hara, S. Tittes, J.S. Rest, Rapid genome-wide evolution in - 1633 Brassica rapa populations following drought revealed by sequencing of ancestral and - 1634 descendant gene pools, Mol. Ecol., 25 (2016) 3622-3631. - 1635 [328] E. Hamann, C.S. Pauli, Z. Joly-Lopez, S.C. Groen, J.S. Rest, N.C. Kane, M.D. - 1636 Purugganan, S.J. Franks, Rapid evolutionary changes in gene expression in response to - 1637 climate fluctuations, Molecular Ecology, (in review). - 1638 [329] T.F. Cooper, D.E. Rozen, R.E. Lenski, Parallel changes in gene expression after 20,000 - 1639 generations of evolution in Escherichia coli, Proceedings of the National Academy of Sciences, - 1640 100 (2003) 1072-1077. - 1641 [330] C.L. Richards, O. Bossdorf, M. Pigliucci, What role does heritable epigenetic variation play - 1642 in phenotypic evolution?, Bioscience, 60 (2010) 232-237. - 1643 [331] C.L. Richards, C. Alonso, C. Becker, O. Bossdorf, E. Bucher, M. Colome-Tatche, W. - Durka, J. Engelhardt, B. Gaspar, A. Gogol-Doring, I. Grosse, T.P. van Gurp, K. Heer, I. - 1645 Kronholm, C. Lampei, V. Latzel, M. Mirouze, L. Opgenoorth, O. Paun, S. Prohaska, S.A. - Rensing, P. Stadler, E. Trucchi, K. Ullrich, K.J.F. Verhoeven, Ecological plant epigenetics: - 1647 Evidence from model and non-model species, and the way forward, Ecology Letters, 20 (2017) - 1648 1576-1590. - 1649 [332] R. Wooliver, S.B. Tittes, S.N. Sheth, A resurrection study reveals limited evolution of - thermal performance in response to recent climate change across the geographic range of the - scarlet monkeyflower, Evolution; international journal of organic evolution, (2020). - 1652 [333] A.L. Angert, S.N. Sheth, J.R. Paul, Incorporating population-level variation in thermal - performance into predictions of geographic range shifts, Integr Comp Biol, 51 (2011) 733-750. - 1654 [334] A.L. Angert, M. Bayly, S.N. Sheth, J.R. Paul, Testing Range-Limit Hypotheses Using - 1655 Range-Wide Habitat Suitability and Occupancy for the Scarlet Monkeyflower (Erythranthe - 1656 cardinalis), The American Naturalist, 191 (2018) E76-E89. - 1657 [335] A.A. Agrawal, A.P. Hastings, M.T.J. Johnson, J.L. Maron, J.-P. Salminen, Insect - Herbivores Drive Real-Time Ecological and Evolutionary Change in Plant Populations, Science, - 1659 338 (2012) 113-116. - 1660 [336] T. Züst, C. Heichinger, U. Grossniklaus, R. Harrington, D.J. Kliebenstein, L.A. Turnbull, - Natural Enemies Drive Geographic Variation in Plant Defenses, Science, 338 (2012) 116-119. - 1662 [337] J.T. Anderson, J.H. Willis, T. Mitchell-Olds, Evolutionary genetics of plant adaptation, - 1663 Trends in Genetics, 27 (2011) 258-266. - 1664 [338] T. Wang, G.A. O'Neill, S.N. Aitken, Integrating environmental and genetic effects to predict - responses of tree populations to climate, Ecological Applications, 20 (2010) 153-163. - 1666 [339] S.C. Groen, I. Ćalić, Z. Joly-Lopez, A.E. Platts, J.Y. Choi, M. Natividad, K. Dorph, W.M. - 1667 Mauck, B. Bracken, C.L.U. Cabral, A. Kumar, R.O. Torres, R. Satija, G. Vergara, A. Henry, S.J. - 1668 Franks, M.D. Purugganan, The strength and pattern of natural selection on gene expression in - 1669 rice, Nature, 578 (2020) 572-576. - 1670 [340] F. Jay, S. Manel, N. Alvarez, E.Y. Durand, W. Thuiller, R. Holderegger, P. Taberlet, O. - 1671 François, Forecasting changes in population genetic structure of alpine plants in response to - 1672 global warming, Molecular Ecology, 21 (2012) 2354-2368. - 1673 [341] M.C. Fitzpatrick, S.R. Keller, Ecological genomics meets community-level modelling of - biodiversity: mapping the genomic landscape of current and future environmental adaptation, - 1675 Ecology Letters, 18 (2015) 1-16. - 1676 [342] A. VanWallendael, J. Bonnette, T.E. Juenger, F.B. Fritschi, P.A. Fay, R.B. Mitchell, J. - Lloyd-Reilley, F.M. Rouquette Jr, G.C. Bergstrom, D.B. Lowry, Geographic variation in the - genetic basis of resistance to leaf rust between locally adapted ecotypes of the biofuel crop - switchgrass (Panicum virgatum), New Phytologist, n/a (2020). - 1680 [343] S. Atwell, Y.S. Huang, B.J. Vilhjálmsson, G. Willems, M. Horton, Y. Li, D. Meng, A. Platt, - 1681 A.M. Tarone, T.T. Hu, R. Jiang, N.W. Muliyati, X. Zhang, M.A. Amer, I. Baxter, B. Brachi, J. - 1682 Chory, C. Dean, M. Debieu, J. de Meaux, J.R. Ecker, N. Faure, J.M. Kniskern, J.D.G. Jones, T. - 1683 Michael, A. Nemri, F. Roux, D.E. Salt, C. Tang, M. Todesco, M.B. Traw, D. Weigel, P. - Marjoram, J.O. Borevitz, J. Bergelson, M. Nordborg, Genome-wide association study of 107 - phenotypes in Arabidopsis thaliana inbred lines, Nature, 465 (2010) 627-631. - 1686 [344] P.J. Flood, A.M. Hancock, The genomic basis of adaptation in plants, Curr Opin Plant Biol, 36 (2017) 88-94. - 1687 36 (2017) 88-94. - 1688 [345] A. Fournier-Level, A. Korte, M.D. Cooper, M. Nordborg, J. Schmitt, A.M. Wilczek, A Map of - Local Adaptation in Arabidopsis thaliana, Science, 334 (2011) 86-89. - 1690 [346] A.M. Hancock, B. Brachi, N. Faure, M.W. Horton, L.B. Jarymowycz, F.G. Sperone, C. - 1691 Toomajian, F. Roux, J. Bergelson, Adaptation to climate across the Arabidopsis thaliana - 1692 genome, Science, 334 (2011) 83-86. - 1693 [347] M. Exposito-Alonso, F. Vasseur, W. Ding, G. Wang, H.A. Burbano, D. Weigel, Genomic - basis and evolutionary potential for extreme drought adaptation in Arabidopsis thaliana, Nature - 1695 Ecology & Evolution, 2 (2018) 352-358. - 1696 [348] M. Exposito-Alonso, M. Exposito-Alonso, R. Gómez Rodríguez, C. Barragán, G. Capovilla, - 1697 E. Chae, J. Devos, E.S. Dogan, C. Friedemann, C. Gross, P. Lang, D. Lundberg, V. Middendorf, - 1698 J. Kageyama, T. Karasov, S. Kersten, S. Petersen, L. Rabbani, J. Regalado, L. Reinelt, B. - Rowan, D.K. Seymour, E. Symeonidi, R. Schwab, Diep T.N. Tran, K. Venkataramani, A.-L. Van - de Weyer, F. Vasseur, G. Wang, R. Wedegärtner, F. Weiss, R. Wu, W. Xi, M. Zaidem, W. Zhu, - 1701 F. García-Arenal, H.A. Burbano, O. Bossdorf, D. Weigel, H.A. Burbano, O. Bossdorf, R. Nielsen, - D. Weigel, T. Genomes Field Experiment, Natural selection on the Arabidopsis thaliana genome - 1703 in present and future climates, Nature, 573 (2019) 126-129. - 1704 [349] P.K. Ingvarsson, C. Bernhardsson, Genome-wide signatures of environmental adaptation - in European aspen (Populus tremula) under current and future climate conditions, Evolutionary Applications, 13 (2020) 132-142. - 1707 [350] A.-M. Waldvogel, B. Feldmeyer, G. Rolshausen, M. Exposito-Alonso, C. Rellstab, R. - 1708 Kofler, T. Mock, K. Schmid, I. Schmitt, T. Bataillon, O. Savolainen, A. Bergland, T. Flatt, F. - Guillaume, M. Pfenninger, Evolutionary genomics can improve
prediction of species' responses - 1710 to climate change, Evolution Letters, 4 (2020) 4-18. - 1711 [351] J.R. Stinchcombe, C. Weinig, M. Ungerer, K.M. Olsen, C. Mays, S.S. Halldorsdottir, M.D. - 1712 Purugganan, J. Schmitt, A latitudinal cline in flowering time in Arabidopsis thaliana - 1713 modulated by the flowering time gene FRIGIDA, Proceedings of the National - 1714 Academy of Sciences of the United States of America, 101 (2004) 4712-4717. - 1715 [352] J.R. Lasky, D.L. Des Marais, D.B. Lowry, I. Povolotskaya, J.K. McKay, J.H. Richards, T.H. - 1716 Keitt, T.E. Juenger, Natural variation in abiotic stress responsive gene expression and local - 1717 adaptation to climate in Arabidopsis thaliana, Mol Biol Evol, 31 (2014) 2283-2296. - 1718 [353] S.A. Signor, S.V. Nuzhdin, The Evolution of Gene Expression in cis and trans, Trends in - 1719 Genetics, 34 (2018) 532-544. - 1720 [354] D.L. Des Marais, K.M. Hernandez, T.E. Juenger, Genotype-by-Environment Interaction - and Plasticity: Exploring Genomic Responses of Plants to the Abiotic Environment, Annual - 1722 Review of Ecology, Evolution, and Systematics, 44 (2013) 5-29. - 1723 [355] S.C. Groen, M.D. Purugganan, Systems genetics of plant adaptation to environmental - 1724 stresses, Am J Bot, 103 (2016) 2019-2021. - 1725 [356] S.C. Campbell-Staton, Z.A. Cheviron, N. Rochette, J. Catchen, J.B. Losos, S.V. Edwards, - 1726 Winter storms drive rapid phenotypic, regulatory, and genomic shifts in the green anole lizard, - 1727 Science, 357 (2017) 495. - 1728 [357] A. Whitehead, D.L. Crawford, Neutral and adaptive variation in gene expression, - 1729 Proceedings of the National Academy of Sciences, 103 (2006) 5425-5430. - 1730 [358] J.F. Ayroles, M.A. Carbone, E.A. Stone, K.W. Jordan, R.F. Lyman, M.M. Magwire, S.M. - 1731 Rollmann, L.H. Duncan, F. Lawrence, R.R.H. Anholt, T.F.C. Mackay, Systems genetics of - 1732 complex traits in Drosophila melanogaster, Nature Genetics, 41 (2009) 299-307. - 1733 - 1734 - 1735 - 1736