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1  | INTRODUC TION

The amount of carbon dioxide (CO2) released into the atmosphere 
from fossil fuels and industry is at a staggering all‐time high of ~36 
billion tonnes (Gt, 109) annually, having risen every decade since the 
1960s (Le Quere et al., 2018). Cumulative emissions from human 
activities since the onset of the pre‐industrial era have raised the 

atmospheric concentration of CO2, and other major greenhouse 
gases (GHGs), to levels unprecedented in human history.

What's more, the concentration of atmospheric CO2 and other 
GHGs has risen so rapidly over the past few decades that Earth's tem‐
perature has yet to adjust fully to the new warmer climate they dictate. 
This means that even if we could magically stop our CO2 emissions from 
fossil fuels overnight, we have already committed Earth to transition to a 
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Societal Impact Statement
Human‐made climate change places the future of the planet in peril. Rapid green‐
house gas emissions over the past few decades already commit Earth to a warmer 
climate state and lock‐in future extinctions. I consider what steps might be taken to 
protect the climate and the future of the biosphere by drawing on our understanding 
of	the	Devonian	rise	of	forests.	At	stake	is	nothing	less	than	the	future	of	humanity	
and the fate of species we are fortunate enough to share the planet with.
Summary
Drastic phase down of our carbon dioxide (CO2) emissions from burning fossil fuels 
within decades will likely be insufficient to avoid seeding catastrophic human‐caused 
climate change. We have to also start removing CO2 from the atmosphere, safely, 
affordably and within decades. Technological approaches for large‐scale carbon re‐
moval and storage hold great promise but are far from the gigaton‐scale required. 
Enhanced chemical weathering of crushed silicate rocks and afforestation are pro‐
posed CO2 removal approaches mimicking events during the Devonian rise of for‐
ests that triggered massive CO2	 drawdown	 and	 the	 great	 late	 Palaeozoic	 cooling.	
Evidence from Earth's history suggests that if undertaken at scale, these strategies 
may represent key elements of a climate restoration plan but will still be far from 
sufficient.	Climate	protests	 by	 the	world's	 youth	 are	 justified.	 They	 recognize	 the	
urgency of the situation and the intergenerational injustice of our time: current and 
future generations footing the immense economic and ecological bill for damaging 
carbon emissions they had no part in and which world leaders are failing to limit.

K E Y W O R D S

carbon dioxide removal, chemical weathering, climate change, Earth history, reforestation

www.wileyonlinelibrary.com/journal/ppp3
mailto:￼
https://orcid.org/0000-0003-1869-4314
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:d.j.beerling@sheffield.ac.uk


2  |     BEERLING

warmer climate (Hansen et al., 2013). Global temperatures have risen by 
more	than	1°C	since	the	1970s	(IPCC,	2018).	How	much	more	warming	
is ‘in the pipeline’? In the near‐term, we are practically guaranteed an‐
other 0.5°C as the climate system equilibrates to the increased radiative 
forcing from rising concentrations of GHGs, with slow amplifying climate 
feedbacks likely to add another 1.0, 1.5°C or worse. In December 2015, 
over	190	nations	worldwide	signed	up	to	the	United	Nations	Framework	
Convention	on	Climate	Change	Paris	Agreement	with	the	aim	of	hold‐
ing the increase in global average temperate to below 2°C and pursue 
efforts to limit the increase to 1.5°C, but without a legal mandate for 
enforcement	(UNFCCC,	2015).	Given	the	current	situation,	even	a	 le‐
nient 2°C target now looks wildly optimistic, and significant temperature 
‘overshoots’ seem more likely, with potentially disastrous consequences 
for	the	planet	(IPCC,	2018;	Obersteiner	et	al.,	2018).

International	 scientific	 organizations,	 including	 the	 UK's	 Royal	
Society	 (Royal	 Society,	 2018),	 the	 National	 Academy	 of	 Sciences	 in	
the	United	States	(National	Academy	of	Sciences,	2015,	2018)	and	the	
United	 Nations	 Intergovernmental	 Panel	 on	 Climate	 Change	 (IPCC,	
2018), acknowledge that we have to start removing CO2 from the at‐
mosphere,	safely,	affordably	and	within	a	decade	or	two.	At	the	same	
time, we need to transform fundamentally our global energy systems by 
replacing carbon‐intensive fossil fuels with low‐emission or carbon‐free 
alternatives to slow and then halt carbon emissions (Davis et al., 2018). 
And,	every	year	we	delay	emissions	reductions,	tens	of	billion	of	tonnes	
of CO2 are released into the atmosphere, making an already herculean 
task	increasingly	difficult	(Hansen	et	al.,	2013,	2017;	Stocker,	2013).

2  | ENTER THE KINGDOM OF PL ANTS: 
MAKING EDEN REDUX

Lessons from Earth's history during the greening of the continents 
have	 relevance	 to	 our	 current	 situation	 (Figure	1;	Beerling,	 2019).	

Evidence from Earth history indicates that hundreds of millions of 
years	ago,	during	the	Devonian	Period	(415–360	million	years	ago),	
plants ‘bioengineered’ a cooler climate as the evolutionary appear‐
ance of trees, and the subsequent spread of deep‐rooting forests 
lowered	Palaeozoic	atmospheric	CO2	 levels	by	90%	 (Berner,	1997,	
1998). The mechanisms for this drastic long‐term CO2 decline and 
climatic	descent	towards	the	Permo‐Carboniferous	ice‐age	are	well	
understood.	 As	 root	 systems	 evolved	 to	 become	 larger	 and	more	
complex, they increased the surface area of the soil–root interface 
and exploited larger volumes of soil for anchorage, water and nutri‐
ent	uptake	(Beerling	&	Berner,	2005;	Berner,	1998).	Through	these	
and other biogeochemical impacts, trees accelerated the chemical 
breakdown of silicate rocks (termed weathering), liberating base cat‐
ions and forming dissolved bicarbonate in the process. Eventually, 
transport of the weathering products via surface runoff to the oceans 
resulted	in	long‐term	carbon	storage	(Berner,	1997,	1998).	By	accel‐
erating the chemical weathering of silicate rocks, and locking up re‐
calcitrant carbon as the great Carboniferous coal measures formed, 
tree	 evolution	 can	be	 viewed	 as	 an	 engine	driving	 late	Palaeozoic	
cooling. This remarkable episode in the evolutionary history of plant 
life saw Earth transition to a forested planet, and entrain self‐re‐
inforcing	 (or	 positive)	 feedbacks	 whereby	 bigger	 trees	 →	 deeper	
roots	 →	 faster	 weathering	 →	 greater	 nutrient	 release	 →	 bigger	
trees	 →	 atmospheric	 carbon	 dioxide	 removal	 →	 cooler	 climate	
(Algeo	&	Scheckler,	1998;	Beerling,	2007,	2019;	Beerling	&	Berner,	
2005;	Berner,	1997,	1998).

It may be possible to mimic those processes to remove CO2 from 
the atmosphere by dressing the soils of agricultural and forestry 
landscapes with crushed rapidly weathering silicate rocks, such as 
basalt	(Beerling	et	al.,	2018;	Haque,	Chiang,	&	Santos,	2019;	Kantola,	
Masters,	 Beerling,	 Long,	 &	DeLucia,	 2017;	 Zhang,	 Kang,	Wang,	 &	
Zhu,	2018).	The	approach	harnesses	the	power	of	plants,	their	root‐
associating symbiotic microbiota and corrosive soil pore waters, to 

F I G U R E  1  Symmetry	in	categories	of	carbon	sequestration	processes	during	Earth's	transition	to	a	forested	planet	through	the	Devonian	
and those proposed for future climate change mitigation
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chemically	break	down	rock	dust	and	capture	carbon	(Zhang,	et	al.	
2018;	Kantola	et	al.,	2017).	Alkaline	silicate	rock	dust	minerals	are	
immediately available and may be suitable for diverse crops and for‐
estry initiatives. Making biogeochemical soil improvements in this 
way may also boost yields and harvests by adding plant‐essential 
nutrients and helping reverse soil acidification.

At	the	same	time,	an	alarming	soils	crisis	is	unfolding	(Banwart,	
2011).	According	to	the	United	Nations	(2017),	agricultural	top	soils	
that provide food security for billions of people are disappearing at 
a rate of 25 Gt/year. Conservation agriculture (which includes min‐
imum tillage) addresses this problem by reducing mechanical soil 
disturbance and adding organic carbon back to soil. Implementation 
is increasing, and conservation agriculture is being practiced on 
about 180 million hectares of cropland, ~12.5% of croplands glob‐
ally,	 with	 adoption	 becoming	 widespread	 throughout	 North	 and	
South	 America	 and	 Europe	 (Kassam,	 Friedrich,	 &	 Derpsch,	 2019).	
Yet,	more	needs	to	be	done.	And,	both	large‐scale	CO2 removal and 
rebuilding of our rapidly disappearing top soils that underpin food 
security could be addressed with restorative soil management prac‐
tices involving crushed natural and artificial silicate rocks to improve 
global carbon and nutrient cycles. The joint requirement for saving 
our climate and soils has congruence, in terms of the magnitude of 
the	problem	and	solution,	and	this	could	help	incentivize	action	and	
increase feasibility. 

Humans have put ~1.53 billion hectares of land to the plough 
over	the	past	century	(Foley	et	al.,	2011),	releasing	a	cumulative	ca.	
133	Gt	C	from	soils	in	the	process	(Sanderman,	Hengl,	&	Fiske,	2017),	
and application of crushed rock to farmland could exploit existing 
logistic	 infrastructure.	 Potential	 also	 exists	 for	 increasing	 carbon	
sequestration in agricultural soils through changes in land man‐
agement	 practices	 (Minasny	 et	 al.,	 2017;	 Zomer,	 Bossio,	 Sommer,	
&	Verchot,	2017),	including	addition	of	biochar	formed	by	pyrolysis	
of	 biomass	 (Woolf,	Amonette,	 Street‐Perrott,	 Lehmann,	&	 Joseph,	
2010), with possible benefits for food security. However, as with 
most large‐scale CO2 removal proposals, complex cultural, economic 
and political constraints raise uncertainties over their effectiveness 
(Amundson	&	Biardeau,	2018).

We could also develop allied strategic carbon removal initiatives 
by undertaking reforestation of forested lands once cleared for agri‐
culture,	and	afforestation	of	new	areas	(Lewis,	Wheeler,	Mitchard,	&	
Koch, 2019), again mimicking the ancient Devonian ‘greening of land’ 
when	forests	first	spread	across	the	continents	(Figure	1;	Beerling,	
2019).	 But	 the	 case	 is	 far	 from	 straightforward.	 Ambitious	 global	
tree restoration opportunities that could promote carbon seques‐
tration	with	multiple	benefits	 (Bastin	 et	 al.,	 2019)	 require	 feasibil‐
ity assessment, costings and careful carbon accounting, and must 
avoid	 potential	 conflicts	with	 the	 rising	 demand	 for	 food.	As	 part	
of	The	Bonn	Challenge,	an	international	plan	to	restore	350	million	
hectares	 of	 forest	 by	 2030,	 43	 countries	 throughout	 the	 tropics	
and subtropics have already committed to replanting 300 million 
hectares	of	degraded	land	(The	Bonn	Challenge,	2011).	However,	if	
reforestation occurs through planting of commercial trees that are 
regularly harvested every 10–20 years, much of the CO2 captured 

will be returned back to the atmosphere. More effective would be to 
encourage natural forest regeneration in the tropics to lock‐up CO2 
in forest biomass and soils (Lewis et al., 2019). Undertaken across 
a sufficiently large area of the globe, restoration of degraded for‐
ested ecosystems has the potential to sequester another few billion 
tonnes of CO2 by 2100, although verifying increases in tropical for‐
est carbon stocks may prove challenging (Erb et al., 2018). It also 
requires careful assessment of possible indirect cooling feedbacks 
via	changes	in	atmospheric	chemistry	(Popkin,	2019).

3  | CHALLENGES AHE AD

To be absolutely clear, none of these making eden redux carbon 
capture measures represent a sufficient climate restoration plan. 
Bringing	the	atmospheric	CO2 concentration back down to an esti‐
mated safe concentration of ~350 ppm (Hansen et al., 2008) requires 
immediate action to phase down emissions, and a wider portfolio 
of carbon removal techniques to scrub sufficient amounts of car‐
bon from the atmosphere each year. Yet, these technologies are im‐
mature and need multibillion dollar investment to move them from 
the lab to pilot demonstrations to determine what can scale mas‐
sively.	Erik	Solheim,	previous	Executive	Director,	the	United	Nations	
Environment	Programme,	recently	issued	a	call	to	arms	here,	‘if we in‐
vest in the right technologies, ensuring that the private sector is involved, 
we can still meet the promise we made to our children to protect their 
future. But we have to get on the case now’	(UN	News,	2017).

Right now, carbon removal strategies look like an expensive 
option for helping to slow the pace of climate change (Hansen et 
al., 2017) and we must hope that as the engineering challenges are 
solved, costs fall precipitously as seen in other markets, such as solar 
energy, to catalyse carbon capture. Without emissions reductions 
combined with a suite of carbon removal efforts, we will face the 
profound consequences—growing climate impacts including intensi‐
fying droughts, heat‐waves, storms, ice‐sheet melt and multi‐metre 
sea‐level rise flooding coastal regions threatening displacement of 
hundreds	of	millions	of	people	 (Clark	et	al.,	2016).	Not	to	mention	
a	biosphere	in	peril	 (Hansen	et	al.,	2013;	Lovejoy	&	Hannah,	2019;	
Treves et al., 2018), as human activities prime the engine of species 
extermination and threaten to seal the fate of biological diversity 
for	millions	 of	 years	 (Beerling,	 2019).	 This	 is	 the	 intergenerational	
injustice of our time: current and future generations footing the im‐
mense economic and ecological bill for damaging carbon emissions 
they played no part in, and which threaten to wreck the planet by 
initiating slow climate feedbacks and irreversible climate change on 
timescales relevant to human society (Hansen et al., 2013, 2017).

Our current climate crisis is urgent and unfolding at a time when 
global food demand will need to more than double before the end 
of	the	century	 (Godfray	et	al.,	2010).	Can	we	stabilize	the	climate,	
preserve the wonderful diversity of life on Earth and sustainably 
feed a crowded planet, without collateral environmental damage? 
Reducing GHG emissions from agriculture without compromising 
food security has to be a priority. Revisiting natural processes of 
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carbon sequestration that occurred during Earth's transition to a for‐
ested planet offers pointers for delivering on this grand challenge. 
With the collective moral failure of world leaders to act so far, it is 
hardly surprising that young people worldwide are bravely striking 
for action on climate change (Hagedorn et al., 2019) supported by 
thousands	of	scientists	(The	Guardian,	2019).	At	stake	is	nothing	less	
than the future of humanity and the fate of species we are fortunate 
enough to share the planet with.
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