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1  | INTRODUC TION

The amount of carbon dioxide (CO2) released into the atmosphere 
from fossil fuels and industry is at a staggering all‐time high of ~36 
billion tonnes (Gt, 109) annually, having risen every decade since the 
1960s (Le Quere et al., 2018). Cumulative emissions from human 
activities since the onset of the pre‐industrial era have raised the 

atmospheric concentration of CO2, and other major greenhouse 
gases (GHGs), to levels unprecedented in human history.

What's more, the concentration of atmospheric CO2 and other 
GHGs has risen so rapidly over the past few decades that Earth's tem‐
perature has yet to adjust fully to the new warmer climate they dictate. 
This means that even if we could magically stop our CO2 emissions from 
fossil fuels overnight, we have already committed Earth to transition to a 
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Societal Impact Statement
Human‐made climate change places the future of the planet in peril. Rapid green‐
house gas emissions over the past few decades already commit Earth to a warmer 
climate state and lock‐in future extinctions. I consider what steps might be taken to 
protect the climate and the future of the biosphere by drawing on our understanding 
of the Devonian rise of forests. At stake is nothing less than the future of humanity 
and the fate of species we are fortunate enough to share the planet with.
Summary
Drastic phase down of our carbon dioxide (CO2) emissions from burning fossil fuels 
within decades will likely be insufficient to avoid seeding catastrophic human‐caused 
climate change. We have to also start removing CO2 from the atmosphere, safely, 
affordably and within decades. Technological approaches for large‐scale carbon re‐
moval and storage hold great promise but are far from the gigaton‐scale required. 
Enhanced chemical weathering of crushed silicate rocks and afforestation are pro‐
posed CO2 removal approaches mimicking events during the Devonian rise of for‐
ests that triggered massive CO2 drawdown and the great late Palaeozoic cooling. 
Evidence from Earth's history suggests that if undertaken at scale, these strategies 
may represent key elements of a climate restoration plan but will still be far from 
sufficient. Climate protests by the world's youth are justified. They recognize the 
urgency of the situation and the intergenerational injustice of our time: current and 
future generations footing the immense economic and ecological bill for damaging 
carbon emissions they had no part in and which world leaders are failing to limit.
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warmer climate (Hansen et al., 2013). Global temperatures have risen by 
more than 1°C since the 1970s (IPCC, 2018). How much more warming 
is ‘in the pipeline’? In the near‐term, we are practically guaranteed an‐
other 0.5°C as the climate system equilibrates to the increased radiative 
forcing from rising concentrations of GHGs, with slow amplifying climate 
feedbacks likely to add another 1.0, 1.5°C or worse. In December 2015, 
over 190 nations worldwide signed up to the United Nations Framework 
Convention on Climate Change Paris Agreement with the aim of hold‐
ing the increase in global average temperate to below 2°C and pursue 
efforts to limit the increase to 1.5°C, but without a legal mandate for 
enforcement (UNFCCC, 2015). Given the current situation, even a le‐
nient 2°C target now looks wildly optimistic, and significant temperature 
‘overshoots’ seem more likely, with potentially disastrous consequences 
for the planet (IPCC, 2018; Obersteiner et al., 2018).

International scientific organizations, including the UK's Royal 
Society (Royal Society, 2018), the National Academy of Sciences in 
the United States (National Academy of Sciences, 2015, 2018) and the 
United Nations Intergovernmental Panel on Climate Change (IPCC, 
2018), acknowledge that we have to start removing CO2 from the at‐
mosphere, safely, affordably and within a decade or two. At the same 
time, we need to transform fundamentally our global energy systems by 
replacing carbon‐intensive fossil fuels with low‐emission or carbon‐free 
alternatives to slow and then halt carbon emissions (Davis et al., 2018). 
And, every year we delay emissions reductions, tens of billion of tonnes 
of CO2 are released into the atmosphere, making an already herculean 
task increasingly difficult (Hansen et al., 2013, 2017; Stocker, 2013).

2  | ENTER THE KINGDOM OF PL ANTS: 
MAKING EDEN REDUX

Lessons from Earth's history during the greening of the continents 
have relevance to our current situation (Figure 1; Beerling, 2019). 

Evidence from Earth history indicates that hundreds of millions of 
years ago, during the Devonian Period (415–360 million years ago), 
plants ‘bioengineered’ a cooler climate as the evolutionary appear‐
ance of trees, and the subsequent spread of deep‐rooting forests 
lowered Palaeozoic atmospheric CO2 levels by 90% (Berner, 1997, 
1998). The mechanisms for this drastic long‐term CO2 decline and 
climatic descent towards the Permo‐Carboniferous ice‐age are well 
understood. As root systems evolved to become larger and more 
complex, they increased the surface area of the soil–root interface 
and exploited larger volumes of soil for anchorage, water and nutri‐
ent uptake (Beerling & Berner, 2005; Berner, 1998). Through these 
and other biogeochemical impacts, trees accelerated the chemical 
breakdown of silicate rocks (termed weathering), liberating base cat‐
ions and forming dissolved bicarbonate in the process. Eventually, 
transport of the weathering products via surface runoff to the oceans 
resulted in long‐term carbon storage (Berner, 1997, 1998). By accel‐
erating the chemical weathering of silicate rocks, and locking up re‐
calcitrant carbon as the great Carboniferous coal measures formed, 
tree evolution can be viewed as an engine driving late Palaeozoic 
cooling. This remarkable episode in the evolutionary history of plant 
life saw Earth transition to a forested planet, and entrain self‐re‐
inforcing (or positive) feedbacks whereby bigger trees  →  deeper 
roots  →  faster weathering  →  greater nutrient release  →  bigger 
trees  →  atmospheric carbon dioxide removal  →  cooler climate 
(Algeo & Scheckler, 1998; Beerling, 2007, 2019; Beerling & Berner, 
2005; Berner, 1997, 1998).

It may be possible to mimic those processes to remove CO2 from 
the atmosphere by dressing the soils of agricultural and forestry 
landscapes with crushed rapidly weathering silicate rocks, such as 
basalt (Beerling et al., 2018; Haque, Chiang, & Santos, 2019; Kantola, 
Masters, Beerling, Long, & DeLucia, 2017; Zhang, Kang, Wang, & 
Zhu, 2018). The approach harnesses the power of plants, their root‐
associating symbiotic microbiota and corrosive soil pore waters, to 

F I G U R E  1  Symmetry in categories of carbon sequestration processes during Earth's transition to a forested planet through the Devonian 
and those proposed for future climate change mitigation
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chemically break down rock dust and capture carbon (Zhang, et al. 
2018; Kantola et al., 2017). Alkaline silicate rock dust minerals are 
immediately available and may be suitable for diverse crops and for‐
estry initiatives. Making biogeochemical soil improvements in this 
way may also boost yields and harvests by adding plant‐essential 
nutrients and helping reverse soil acidification.

At the same time, an alarming soils crisis is unfolding (Banwart, 
2011). According to the United Nations (2017), agricultural top soils 
that provide food security for billions of people are disappearing at 
a rate of 25 Gt/year. Conservation agriculture (which includes min‐
imum tillage) addresses this problem by reducing mechanical soil 
disturbance and adding organic carbon back to soil. Implementation 
is increasing, and conservation agriculture is being practiced on 
about 180 million hectares of cropland, ~12.5% of croplands glob‐
ally, with adoption becoming widespread throughout North and 
South America and Europe (Kassam, Friedrich, & Derpsch, 2019). 
Yet, more needs to be done. And, both large‐scale CO2 removal and 
rebuilding of our rapidly disappearing top soils that underpin food 
security could be addressed with restorative soil management prac‐
tices involving crushed natural and artificial silicate rocks to improve 
global carbon and nutrient cycles. The joint requirement for saving 
our climate and soils has congruence, in terms of the magnitude of 
the problem and solution, and this could help incentivize action and 
increase feasibility. 

Humans have put ~1.53 billion hectares of land to the plough 
over the past century (Foley et al., 2011), releasing a cumulative ca. 
133 Gt C from soils in the process (Sanderman, Hengl, & Fiske, 2017), 
and application of crushed rock to farmland could exploit existing 
logistic infrastructure. Potential also exists for increasing carbon 
sequestration in agricultural soils through changes in land man‐
agement practices (Minasny et al., 2017; Zomer, Bossio, Sommer, 
& Verchot, 2017), including addition of biochar formed by pyrolysis 
of biomass (Woolf, Amonette, Street‐Perrott, Lehmann, & Joseph, 
2010), with possible benefits for food security. However, as with 
most large‐scale CO2 removal proposals, complex cultural, economic 
and political constraints raise uncertainties over their effectiveness 
(Amundson & Biardeau, 2018).

We could also develop allied strategic carbon removal initiatives 
by undertaking reforestation of forested lands once cleared for agri‐
culture, and afforestation of new areas (Lewis, Wheeler, Mitchard, & 
Koch, 2019), again mimicking the ancient Devonian ‘greening of land’ 
when forests first spread across the continents (Figure 1; Beerling, 
2019). But the case is far from straightforward. Ambitious global 
tree restoration opportunities that could promote carbon seques‐
tration with multiple benefits (Bastin et al., 2019) require feasibil‐
ity assessment, costings and careful carbon accounting, and must 
avoid potential conflicts with the rising demand for food. As part 
of The Bonn Challenge, an international plan to restore 350 million 
hectares of forest by 2030, 43 countries throughout the tropics 
and subtropics have already committed to replanting 300 million 
hectares of degraded land (The Bonn Challenge, 2011). However, if 
reforestation occurs through planting of commercial trees that are 
regularly harvested every 10–20 years, much of the CO2 captured 

will be returned back to the atmosphere. More effective would be to 
encourage natural forest regeneration in the tropics to lock‐up CO2 
in forest biomass and soils (Lewis et al., 2019). Undertaken across 
a sufficiently large area of the globe, restoration of degraded for‐
ested ecosystems has the potential to sequester another few billion 
tonnes of CO2 by 2100, although verifying increases in tropical for‐
est carbon stocks may prove challenging (Erb et al., 2018). It also 
requires careful assessment of possible indirect cooling feedbacks 
via changes in atmospheric chemistry (Popkin, 2019).

3  | CHALLENGES AHE AD

To be absolutely clear, none of these making eden redux carbon 
capture measures represent a sufficient climate restoration plan. 
Bringing the atmospheric CO2 concentration back down to an esti‐
mated safe concentration of ~350 ppm (Hansen et al., 2008) requires 
immediate action to phase down emissions, and a wider portfolio 
of carbon removal techniques to scrub sufficient amounts of car‐
bon from the atmosphere each year. Yet, these technologies are im‐
mature and need multibillion dollar investment to move them from 
the lab to pilot demonstrations to determine what can scale mas‐
sively. Erik Solheim, previous Executive Director, the United Nations 
Environment Programme, recently issued a call to arms here, ‘if we in‐
vest in the right technologies, ensuring that the private sector is involved, 
we can still meet the promise we made to our children to protect their 
future. But we have to get on the case now’ (UN News, 2017).

Right now, carbon removal strategies look like an expensive 
option for helping to slow the pace of climate change (Hansen et 
al., 2017) and we must hope that as the engineering challenges are 
solved, costs fall precipitously as seen in other markets, such as solar 
energy, to catalyse carbon capture. Without emissions reductions 
combined with a suite of carbon removal efforts, we will face the 
profound consequences—growing climate impacts including intensi‐
fying droughts, heat‐waves, storms, ice‐sheet melt and multi‐metre 
sea‐level rise flooding coastal regions threatening displacement of 
hundreds of millions of people (Clark et al., 2016). Not to mention 
a biosphere in peril (Hansen et al., 2013; Lovejoy & Hannah, 2019; 
Treves et al., 2018), as human activities prime the engine of species 
extermination and threaten to seal the fate of biological diversity 
for millions of years (Beerling, 2019). This is the intergenerational 
injustice of our time: current and future generations footing the im‐
mense economic and ecological bill for damaging carbon emissions 
they played no part in, and which threaten to wreck the planet by 
initiating slow climate feedbacks and irreversible climate change on 
timescales relevant to human society (Hansen et al., 2013, 2017).

Our current climate crisis is urgent and unfolding at a time when 
global food demand will need to more than double before the end 
of the century (Godfray et al., 2010). Can we stabilize the climate, 
preserve the wonderful diversity of life on Earth and sustainably 
feed a crowded planet, without collateral environmental damage? 
Reducing GHG emissions from agriculture without compromising 
food security has to be a priority. Revisiting natural processes of 
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carbon sequestration that occurred during Earth's transition to a for‐
ested planet offers pointers for delivering on this grand challenge. 
With the collective moral failure of world leaders to act so far, it is 
hardly surprising that young people worldwide are bravely striking 
for action on climate change (Hagedorn et al., 2019) supported by 
thousands of scientists (The Guardian, 2019). At stake is nothing less 
than the future of humanity and the fate of species we are fortunate 
enough to share the planet with.
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