

Annie S. White, PhD, ASLA

How Native Cultivars Affect Plant/Pollinator Interactions

Prairie Restoration, Prairie Haven, Wisconsin

Prairie Restoration at Earth Source, Fort Wayne, Indiana

Ohio Spiderwort Tradescantia ohiensis

Tradescantia 'Red Grape'

Contraction of the

Designing with Native Species ≠ Installing Native Species

Achillea millefolium A. millefolium 'Strawberry Seduction'

*Agastache foeniculum Agastache '*Golden Jubilee'

Aquilegia canadensis A. canadensis 'Corbett'

Asclepias tuberosa A. tuberosa 'Hello Yellow'

*Baptisia australis B. x varicolor '*Twilite' Prairieblues

Geranium maculatum G. maculatum 'Espresso'

*Helenium autumnale Helenium '*Moerheim Beauty'

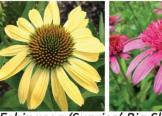
Lobelia cardinalis L. cardinalis 'Fried Green Tomatoes'

Monarda fistulosa M. fistulosa 'Claire Grace'

Penstemon digitalis P. digitalis 'Husker Red'

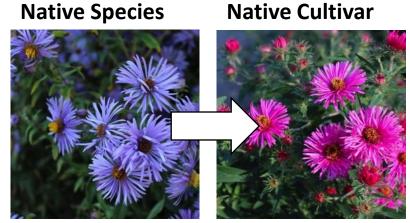
Rudbeckia fulgida var. fulgida R. fulgida 'Goldsturm'

Tradescantia ohiensis Tradescantia 'Red Grape'


Veronicastrum Virginicum V. virginicum 'Lavendelturm'

Symphyotrichum novae-angliae S. novae-angliae 'Alma Potschke'

Echinacea purpurea E. purpurea 'White Swan'



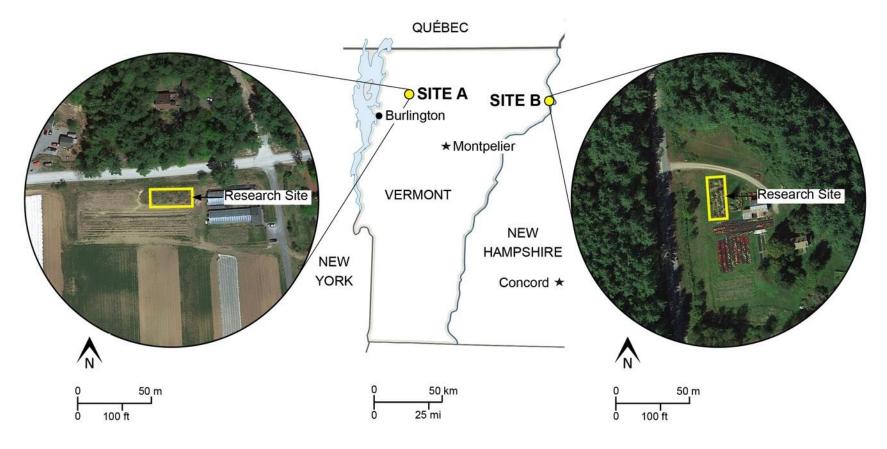
Echinacea 'Sunrise' Big Sky Echinacea 'Pink Double Delight'

NATIVE SPECIES VS. NATIVE CULTIVAR

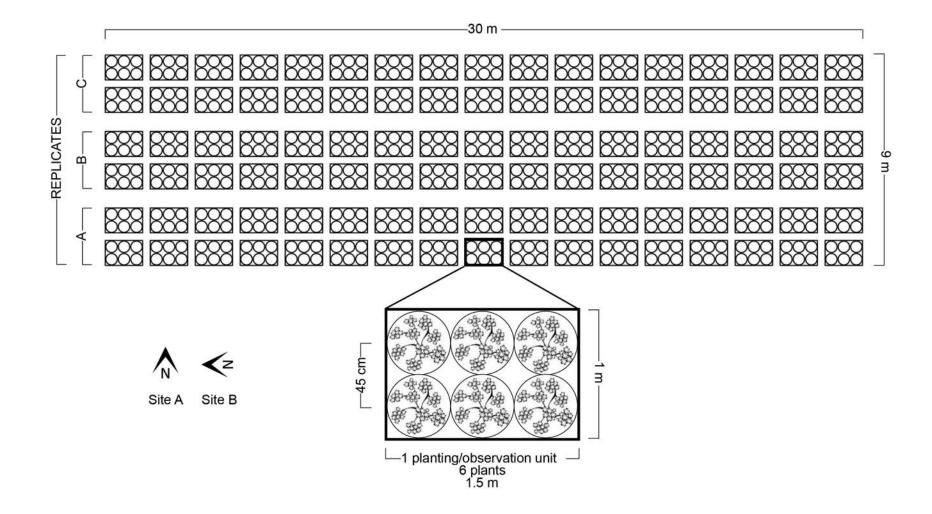
Native Species: A plant that is a part of the balance of nature and has developed over hundreds or thousands of years in a particular region or ecosystem.

Native Cultivar: A variation of a native species, deliberately selected, cross-bred or hybridized for desirable characteristics that can be maintained by propagation.

Symphyotrichum novae-angliae (New England Aster) & S. novae-angliae 'Alma Potschke' **Research Goal:** Evaluate whether native plant cultivars can provide the same value to pollinators as native species in pollinator habitat restorations



Site A


River Berry Farm Fairfax, Franklin County, VT USDA Hardiness Zone: 4B Soils: Excessively drained Windsor loamy fine sand

Site B

Maidstone Plant Farm Maidstone, Essex County, VT USDA Hardiness Zone: 4A Soils: Well-drained Adams loamy fine sand

EXPERIMENTAL DESIGN

Class: Insecta _____

– Order: Hymenoptera ––––––

Super family: Apoidea

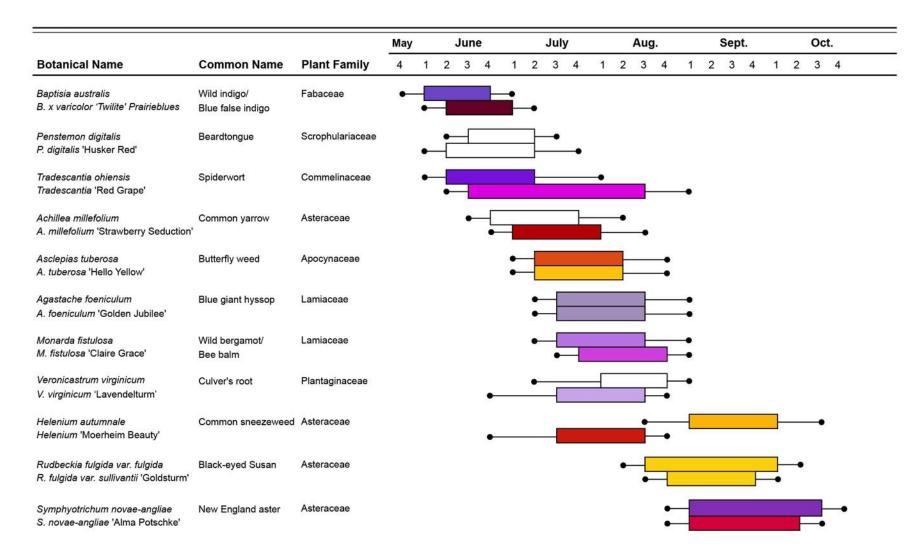
1. *Apis mellifera* honey bees

2. *Bombus spp.* bumble bees

3. other native bees

4. wasps/ants

5. Diptera flies



beetles/bugs

7. Lepidoptera butterflies/moths

- 8. All pollinators
- 9. All bee pollinators
- 10. All native bee pollinators

Bloom color, time, and duration

A. White, 2016

Mean pollinator abundance foraging on species/cultivars

Mean pollinator abundance reported as least squares means. Pollinator preferences between the native species and native cultivar of each plant species was determined using a generalized linear mixed model. A preference is considered significant if P < 0.05. Cells with (-) had no pollinator visits or an insufficient number of visits for analysis. Plant types with (+) in Honeybee visits indicates that the species was only at Site B and no honeybees were present in the landscape during bloom.

		All Insect Pollinators	All Bee Pollinators	All Native Bees	Honey Bees	Bumble Bees	Other Native Bees	Flies	Butterflies/ Moths	Beetles/ Bugs	Wasps/ Ants
	Asclepias tuberosa	14.87 ± 1.73	14.53 ± 1.80	14.53 ± 1.80	+	14.40 ± 1.71		0.13 ± 0.08	-	-	
1	A. tuberosa 'Hello Yellow'	10.89 ± 1.40	10.46 ± 1.39	10.46 ± 1.39	+	10.30 ± 1.32	1752	0.27 ± 0.15		5	1.00
I .	Significance	P = 0.066	P = 0.057	P = 0.057	+	P = 0.0540		P = 0.2914		<u>.</u>	2140
I .	Monarda fistulosa	10.28 ± 0.78	9.21 ± 0.78	9.14 ± 0.70		12.73 ± 0.712	150	-	-		8 5 6
5	M. fistulosa 'Claire Grace'	8.88 ± 0.67	7.90 ± 0.67	7.81 ± 0.92	-	9.68 ± 0.58	-	-	-	-	
č	Significance	P = 0.097	P = 0.139	P = 0.152	-	P = 0.0544	-	8	-		-
<u>e</u>	Penstemon digitalis	4.85 ± 0.69	4.31 ± 0.62		1.35 ± 0.31	0.93 ± 0.23	2.22 ± 0.43	-	-	-	
ŭ	P. digitalis 'Husker Red'	3.40 ± 0.51	3.10 ± 0.46	2.98 ± 0.41	0.23 ± 0.12	0.79 ± 0.20	1.56 ± 0.33	-	-		-
<u>a</u>	Significance	P = 0.054	P = 0.068	P = 0.197	P = 0.0129	P = 0.4976	P = 0.1989	-	-	-	2.00
Selections	Rudbeckia fulgida var. fulgida	4.80 ± 0.59	2.28 ± 0.25	2.28 ± 0.25	+	0.26 ± 0.11	2.15 ± 0.22	2.34 ± 0.44	-	-	-
ĩ	R. fulgida var. sullivantii 'Goldsturm'	5.12 ± 0.62	2.34 ± 0.25	2.32 ± 0.25	+	0.32 ± 0.12	1.81 ± 0.23	2.54 ± 0.47		-	
I 1	Significance	P = 0.657	P = 0.910	P = 0.910	+	P = 0.6814	P = 0.3029	P = 0.6882	-	-	•
I 1	Veronicastrum virginicum	14.36 ± 1.10	12.24 ± 0.93	6.95 ± 0.79	3.80 ± 0.76	5.94 ± 1.55	-	-	-	•	
I 1	V. virginicum 'Lavendelturm'	27.35 ± 1.76	26.30 ± 1.45	19.04 ± 1.48	5.60 ± 1.37	16.22 ± 4.45	-	-	-	-	-
	Significance	P = 0.018	P = 0.011	P = 0.011	P = 0.071	P = 0.640	-	Ħ	-	*	
	Achillea millefolium	22.33 ± 2.74	8.81 ± 1.54	8.70 ± 1.48	-	-	8.59 ±1.09	8.39 ± 3.33	-	0.45 ± 3.93	-
I 1	Achillea 'Strawberry Seduction'	3.17 ± 0.62	0.37 ± 0.21	0.38 ± 0.21			0.39 ± 0.11	4.57 ± 2.75	-	0.04 ± 0.37	0.00
1	Significance	P < 0.001	P < 0.001	P < 0.001	-	-	P < 0.0001	P = 0.3616	-	P = 0.0019	
I 1	Agastache foeniculum	31.07 ± 6.06	23.11 ± 4.76	13.35 ± 2.67	9.03 ± 2.32	12.31 ± 2.29		-	-	4.63± 1.55	
L	Agastache 'Golden Jubilee'	20.03 ± 4.14	18.63 ± 3.88	13.30 ± 2.66	4.96 ± 1.30	11.39 ± 2.15	-	-	-	0.33 ± 0.19	1.21
I 1	Significance	P = 0.041	P = 0.308	P = 0.980	P = 0.0112	P = 0.4531	-	=		P = 0.0128	3.00
L	Baptisia australis	7.01 ± 0.49	6.88 ± 0.52	6.88 ± 0.52	20	5.51 ± 0.52	1.30 ± 0.23	2	-	2	-
S	B. x varicolor 'Twilite Prairieblues'	3.12 ± 0.32	3.07 ± 0.34	3.07 ± 0.34		2.89 ± 0.29	0.15 ± 0.08	=	17	7 1	0.00
-Hybrids	Significance	P < 0.001	P < 0.001	P < 0.001		P < 0.0001	P = 0.0006	-	12	22	1.
ā	Helenium autumnale	35.99 ± 5.07	31.17 ± 5.43	15.89 ± 4.49	12.85 ± 3.69	14.30 ± 3.21	0.20 ± 14.47	0.57 ± 0.33	. 		
₹	Helenium 'Moerheim Beauty'	3.53 ± 0.40	2.52 ± 0.37	2.31 ± 0.30	0.46 ± 0.12	1.21 ± 0.22	0.17 ± 12.66	0.76 ± 0.29		<u>.</u>	-
†	Significance	P < 0.001	P < 0.001	P < 0.001	P < 0.0001	P < 0.0001	P = 0.6788	P = 0.6835		-	-
1	Symphyotrichum novae-angliae	46.04 ± 1.42	43.89 ± 1.27	30.59 ± 1.04	9.02 ± 0.56	29.89 ± 1.08	0.40 ± 0.14	-	1.23 ± 0.27		-
1	S. novae-angliae 'Alma Potschke'	4.98 ± 0.41	4.93 ± 0.40	2.92 ± 0.31	1.83 ± 0.22	2.84 ± 0.32	0.09 ± 0.05	-	0.09 ± 0.06	-	-
1	Significance	P < 0.001	P < 0.001	P < 0.001	P < 0.0001	P < 0.0001	P = 0.0267	2	P = 0.0021	2	
1	Tradescantia ohiensis	5.35 ± 0.70	3.44 ± 0.61	1.71 ± 0.38	3.65 ± 0.80	1.41		0.83 ± 0.14	-		
1	Tradescantia 'Red Grape'	3.17 ± 0.40	1.43 ± 0.29	0.82 ± 0.19	1.39 ± 0.29		120	0.42 ± 0.60	-	2	-
	Significance	P < 0.001	P = 0.001	P = 0.006	P = 0.0002	-	-	P = 0.8856	-	-	

KEY:

Preference for species

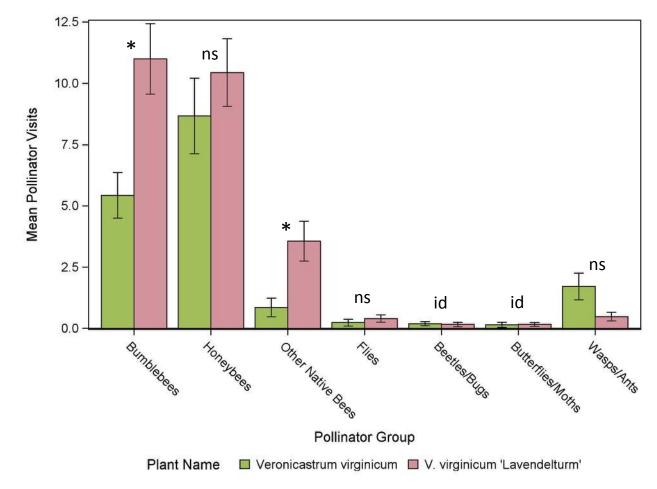
No significant preference

Preference for cultivar

New England Aster Symphyotrichum novae-angliae New England Aster S. novae-angliae 'Alma Potschke'

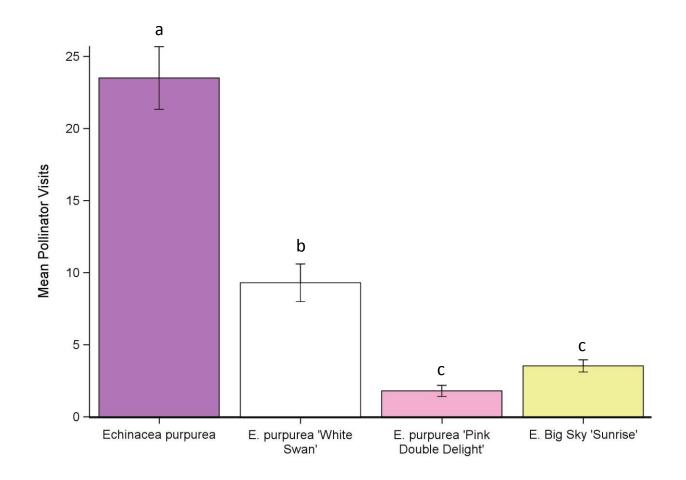
Symphyotrichum novae-angliae S. novae-angliae 'Alma Poetschke' Mean abundance of pollinators foraging on native species Symphyotrichum novae-angliae and native cultivar S. novaeangliae 'Alma Potschke' per planting unit per 5 minutes by seven pollinator groups at Site A and Site B in 2013 and 2014 combined

A. White & L. Perry, In Review 2017



Veronicastrum Virginicum V. virginicum 'Lavendelturm'

Veronicastrum Virginicum V. virginicum 'Lavendelturm' Mean visits to *Veronicastrum virginicum* and cultivar *V. virginicum* 'Lavendelturm' by seven pollinator groups for Site A and Site B in 2013 and 2014 combined



A. White & L. Perry, In Review, 2017

EVALUATING ECHINACEAS (Coneflower)

 Botanical Name	Description	Breeder	Selected traits	Fertility	Bloom duration	floral abundance	Winter Survival
Echinacea purpurea	Native Species	N/A	None	high	30-45 days	20.8 ± 8.81	82%
<i>E. purpurea</i> 'White Swan'	Open- pollinated selection	N/A	White ray flowers, compactness	high	30-45 days	12.63 ± 5.70	82%
<i>E. purpurea</i> 'Pink Double Delight'	Double- flowered selection	AB Cultivars	Pink, double- flowers, many blooms, disease resistance	low	45-60 days	34.22 ± 10.02	75%
Echinacea 'Sunrise'	Interspecific hybrid	ItSaul Plants	Yellow ray flowers, disease resistance, compactness	low	30-45 days	8.62 ± 3.65	32%

Bee Pollinators Foraging on *Echinacea*

Research Question: Do quantity, quality, and patterns of nectar production differ between native species and native cultivars?

Disposable microcapillary tubes in 0.5 μ L - 5 μ L

Handheld refractometer modified for low volumes

(Comba et al. 1998; Morrant et al. 2009)

Lobelia cardinalis Cardinal Flower

Lobelia siphilitica Great Blue Lobelia

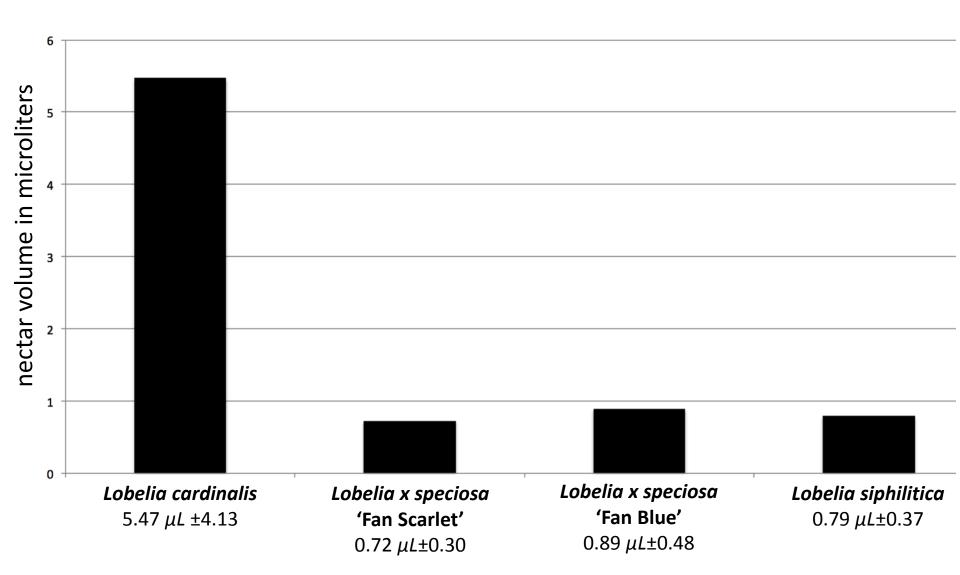
Lobelia x speciosa

Lobelia x speciosa 'Fan Scarlet' Lobelia x speciosa 'Fan Blue'

Nectar production in *Lobelia cardinalis* and *Lobelia siphilitica* vs. *Lobelia* x speciosa

Lobelia cardinalis

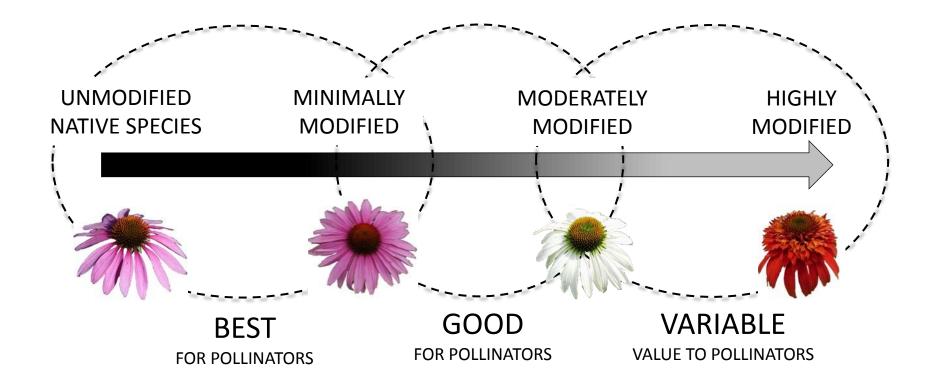
Lobelia x speciosa 'Fan Scarlet'



Lobelia x speciosa 'Fan Blue'

Lobelia siphilitica

Mean nectar volume in Lobelias


A. White, In Preparation, 2016

Lobelia cardinalis Mean nectar: 5.47 μL ±4.13

Lobelia x speciosa 'Fan Scarlet' Mean nectar: 0.72 µL±0.30

A. White, 2016

OTHER CONCERNS WITH NATIVE CULTIVARS

Monarda fistulosa 'Claire Grace' (left) and Monarda fistulosa (right)

- Decreased hardiness
- Decreased genetic diversity = decreased resiliency to environmental fluctuations

OTHER CONCERNS WITH NATIVE CULTIVARS

Risk of genetically polluting native species

(Van Gaal et al. 1998; Gibbs et al. 2012; Kaljund & Leht 2013)

Plebejus melissa samuelis (Karner Blue Butterfly) Lupinus perennis is
susceptible to
hybridization and
introgression by Lupinus
x hybrida (Hybrid
Lupines), e.g. Russell
Hybrids

- An evaluation of 10

 commercial seed sources
 found only 2 to be the
 straight species
 (Gibbs et al. 2012. Restoration Ecology.)
- Reportedly, hybrid Lupines are <u>not</u> a host plant for Karner Blue Butterflies

Native	Species		Native Cultivars			
Benefits Challenges			Benefits	Challenges		
Adapted to local soils & climate conditions Preferred host plants for native insects and food source for native birds Promote biodiversity Promote conservation and stewardship of our natural heritage	Less predictable in the landscape Less uniform and in size/shape Aesthetic perception that they are "too wild" and "too weedy" Difficulty sourcing plant material		 Unique ornamental traits (e.g. new flower or foliage color) More uniform in size/shape Some have more flowers and longer bloom times Easier to propagate 	Loss of genetic diversity Less adapted to local soils & climate May not be open- pollinated and will not self-seed May be less attractive and provide lower quality resources to pollinators		

A. White, 2016.

"We shall never achieve harmony with the land, anymore than we shall achieve absolute justice or liberty for people. In these higher aspirations the important thing is not to achieve but to strive."

— Aldo Leopold, Round River: From the Journals of Aldo Leopold

Annie S. White, PhD, ASLA Lecturer, University of Vermont Owner, Nectar Landscape Design Studio, Ilc email: annie@nectarvt.com

Facebook/Instagram: @nectarlandscapes

research website: <u>www.pollinatorgardens.org</u>

company website: <u>www.nectarvt.com</u>

