Sunflower is a unique model species for assessing crop responses and adaptation to climate change. We provide an initial assessment of how climate change may influence the abiotic and biotic environment of cultivated sunflower across the world. We find an 8% shift between current and future climate space in cultivated sunflower locations globally, and a 48% shift in Northern America, where the crop originates. Globally,the current niche occupied by sunflower cropwild relatives offer few opportunitiesto adapt to future climate for cultivated sunflower, but in Northern America 100% of the future climate space of cultivated sunflower is filled by the niche of primary wild relative germplasm alone (e.g. wild Helianthus annuus). Globally, we find little difference in the overlap between current and future climate space of cultivated sunflower with the niche of the important sunflower pathogen Sclerotinia sclerotiorum, but in Northern America, climate change will decrease the overlap between local populations of this pest and cultivated sunflower by 38%. Our analysis highlights the utility of multi-scale analysis for identifying candidate taxa for breeding efforts and for understanding how future climate will shift the abiotic and biotic environment of cultivated crops.